ترغب بنشر مسار تعليمي؟ اضغط هنا

Language Use Matters: Analysis of the Linguistic Structure of Question Texts Can Characterize Answerability in Quora

47   0   0.0 ( 0 )
 نشر من قبل Suman Kalyan Maity
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Quora is one of the most popular community Q&A sites of recent times. However, many question posts on this Q&A site often do not get answered. In this paper, we quantify various linguistic activities that discriminates an answered question from an unanswered one. Our central finding is that the way users use language while writing the question text can be a very effective means to characterize answerability. This characterization helps us to predict early if a question remaining unanswered for a specific time period t will eventually be answered or not and achieve an accuracy of 76.26% (t = 1 month) and 68.33% (t = 3 months). Notably, features representing the language use patterns of the users are most discriminative and alone account for an accuracy of 74.18%. We also compare our method with some of the similar works (Dror et al., Yang et al.) achieving a maximum improvement of ~39% in terms of accuracy.



قيم البحث

اقرأ أيضاً

This paper explores the task Natural Language Understanding (NLU) by looking at duplicate question detection in the Quora dataset. We conducted extensive exploration of the dataset and used various machine learning models, including linear and tree-b ased models. Our final finding was that a simple Continuous Bag of Words neural network model had the best performance, outdoing more complicated recurrent and attention based models. We also conducted error analysis and found some subjectivity in the labeling of the dataset.
Authorship attribution (AA), which is the task of finding the owner of a given text, is an important and widely studied research topic with many applications. Recent works have shown that deep learning methods could achieve significant accuracy impro vement for the AA task. Nevertheless, most of these proposed methods represent user posts using a single type of feature (e.g., word bi-grams) and adopt a text classification approach to address the task. Furthermore, these methods offer very limited explainability of the AA results. In this paper, we address these limitations by proposing DeepStyle, a novel embedding-based framework that learns the representations of users salient writing styles. We conduct extensive experiments on two real-world datasets from Twitter and Weibo. Our experiment results show that DeepStyle outperforms the state-of-the-art baselines on the AA task.
We present models which complete missing text given transliterations of ancient Mesopotamian documents, originally written on cuneiform clay tablets (2500 BCE - 100 CE). Due to the tablets deterioration, scholars often rely on contextual cues to manu ally fill in missing parts in the text in a subjective and time-consuming process. We identify that this challenge can be formulated as a masked language modelling task, used mostly as a pretraining objective for contextualized language models. Following, we develop several architectures focusing on the Akkadian language, the lingua franca of the time. We find that despite data scarcity (1M tokens) we can achieve state of the art performance on missing tokens prediction (89% hit@5) using a greedy decoding scheme and pretraining on data from other languages and different time periods. Finally, we conduct human evaluations showing the applicability of our models in assisting experts to transcribe texts in extinct languages.
Neuroscientists evaluate deep neural networks for natural language processing as possible candidate models for how language is processed in the brain. These models are often trained without explicit linguistic supervision, but have been shown to lear n some linguistic structure in the absence of such supervision (Manning et al., 2020), potentially questioning the relevance of symbolic linguistic theories in modeling such cognitive processes (Warstadt and Bowman, 2020). We evaluate across two fMRI datasets whether language models align better with brain recordings, if their attention is biased by annotations from syntactic or semantic formalisms. Using structure from dependency or minimal recursion semantic annotations, we find alignments improve significantly for one of the datasets. For another dataset, we see more mixed results. We present an extensive analysis of these results. Our proposed approach enables the evaluation of more targeted hypotheses about the composition of meaning in the brain, expanding the range of possible scientific inferences a neuroscientist could make, and opens up new opportunities for cross-pollination between computational neuroscience and linguistics.
Natural language inference (NLI) is a fundamental NLP task, investigating the entailment relationship between two texts. Popular NLI datasets present the task at sentence-level. While adequate for testing semantic representations, they fall short for testing contextual reasoning over long texts, which is a natural part of the human inference process. We introduce ConTRoL, a new dataset for ConTextual Reasoning over Long texts. Consisting of 8,325 expert-designed context-hypothesis pairs with gold labels, ConTRoL is a passage-level NLI dataset with a focus on complex contextual reasoning types such as logical reasoning. It is derived from competitive selection and recruitment test (verbal reasoning test) for police recruitment, with expert level quality. Compared with previous NLI benchmarks, the materials in ConTRoL are much more challenging, involving a range of reasoning types. Empirical results show that state-of-the-art language models perform by far worse than educated humans. Our dataset can also serve as a testing-set for downstream tasks like Checking Factual Correctness of Summaries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا