ﻻ يوجد ملخص باللغة العربية
Purpose: Implanted fiducial markers are often used in radiotherapy to facilitate accurate visualization and localization of tumors. Typically, such markers are used to aid daily patient positioning and to verify the targets position during treatment. This work introduces a novel, automated method for identifying fiducial markers in planar x-ray imaging. Methods: In brief, the method consists of automated filtration and reconstruction steps that generate 3D templates of marker positions. The normalized cross-correlation was the used to identify fiducial markers in projection images. To quantify the accuracy of the technique, a phantom study was performed. 75 pre-treatment CBCT scans of 15 pancreatic cancer patients were analyzed to test the automated technique under real life conditions, including several challenging scenarios for tracking fiducial markers. Results: In phantom and patient studies, the method automatically tracked visible marker clusters in 100% of projection images. For scans in which a phantom exhibited 0D, 1D, and 3D motion, the automated technique showed median errors of 39 $mu$m, 53 $mu$m, and 93 $mu$m, respectively. Human precision was worse in comparison. Automated tracking was performed accurately despite the presence of other metallic objects. Additionally, transient differences in the cross-correlation score identified instances where markers disappeared from view. Conclusions: A novel, automated method for producing dynamic templates of fiducial marker clusters has been developed. Production of these templates automatically provides measurements of tumor motion that occurred during the CBCT scan that was used to produce them. Additionally, using these templates with intra-fractional images could potentially allow for more robust real-time target tracking in radiotherapy.
Navigation using only one marker, which contains four artificial features, is a challenging task since camera pose estimation using only four coplanar points suffers from the rotational ambiguity problem in a real-world application. This paper presen
Quantitative measures of uptake in caudate, putamen, and globus pallidus in dopamine transporter (DaT) brain SPECT have potential as biomarkers for the severity of Parkinson disease. Reliable quantification of uptake requires accurate segmentation of
Motion blur can impede marker detection and marker-based pose estimation, which is common in real-world robotic applications involving fiducial markers. To solve this problem, we propose a novel lightweight generative adversarial network (GAN), Ghost
Dynamic contrast-enhanced magnetic resonance imaging (DCE- MRI) is a widely used multi-phase technique routinely used in clinical practice. DCE and similar datasets of dynamic medical data tend to contain redundant information on the spatial and temp
Target detection and tracking provides crucial information for motion planning and decision making in autonomous driving. This paper proposes an online multi-object tracking (MOT) framework with tracking-by-detection for maneuvering vehicles under mo