ﻻ يوجد ملخص باللغة العربية
We revisit the manifestly covariant large $c$ expansion of General Relativity, $c$ being the speed of light. Assuming the relativistic connection has no pole in $c^{-2}$, this expansion is known to reproduce Newton-Cartan gravity and a covariant version of Post-Newtonian corrections to it. We show that relaxing this assumption leads to the inclusion of twistless torsion in the effective non-relativistic theory. We argue that the resulting TTNC theory is an effective description of a non-relativistic regime of General Relativity that extends Newtonian physics by including strong gravitational time dilation.
We show how to systematically apply the Faddeev-Jackiw symplectic method to General Relativity (GR) and to GR extensions. This provides a new coherent frame for Hamiltonian analyses of gravitational theories. The emphasis is on the classical dynamics
We investigate a particular type of classical nonsingular bouncing cosmology, which results from general relativity if we allow for degenerate metrics. The simplest model has a matter content with a constant equation-of-state parameter and we get the
We derive the equations of motion for scalar metric perturbations in a particular nonsingular bouncing cosmology, where the big bang singularity is replaced by a spacetime defect with a degenerate metric. The adiabatic perturbation solution is obtain
We perform a covariant 1+3 split of the Newton-Cartan equations. The resulting 3-dimensional system of equations, called textit{the 1+3-Newton-Cartan equations}, is structurally equivalent to the 1+3-Einstein equations. In particular it features the
A non-linear equation obtained by adding gravitational self-interaction terms to the Poisson equation for Newtonian gravity is here employed in order to analyse a static spherically sym- metric homogeneous compact source of given proper mass and radi