ﻻ يوجد ملخص باللغة العربية
We use a set of N-body simulations employing a modified gravity (MG) model with Vainshtein screening to study matter and halo hierarchical clustering. As test-case scenarios we consider two normal branch Dvali-Gabadadze-Porrati (nDGP) gravity models with mild and strong growth rate enhancement. We study higher-order correlation functions $xi_n(R)$ up to $n=9$ and associated hierarchical amplitudes $S_n(R)equivxi_n(R)/sigma(R)^{2n-2}$. We find that the matter PDFs are strongly affected by the fifth-force on scales up to $50h^{-1}$Mpc, and the deviations from GR are maximised at $z=0$. For reduced cumulants $S_n$, we find that at small scales $Rleq10h^{-1}$Mpc the MG is characterised by lower values, with the deviation growing from $7%$ in the reduced skewness up to even $40%$ in $S_5$. To study the halo clustering we use a simple abundance matching and divide haloes into thee fixed number density samples. The halo two-point functions are weakly affected, with a relative boost of the order of a few percent appearing only at the smallest pair separations ($rleq 5h^{-1}$Mpc). In contrast, we find a strong MG signal in $S_n(R)$s, which are enhanced compared to GR. The strong model exhibits a $>3sigma$ level signal at various scales for all halo samples and in all cumulants. In this context, we find that the reduced kurtosis to be an especially promising cosmological probe of MG. Even the mild nDGP model leaves a $3sigma$ imprint at small scales $Rleq3h^{-1}$Mpc, while the stronger model deviates from a GR-signature at nearly all scales with a significance of $>5sigma$. Since the signal is persistent in all halo samples and over a range of scales, we advocate that the reduced kurtosis estimated from galaxy catalogues can potentially constitute a strong MG-model discriminatory as well as GR self-consistency test.
Modified Gravity (MG) scenarios have been advocated to account for the dark energy phenomenon in the universe. These models predict departures from General Relativity on large cosmic scales that can be tested through a variety of probes such as obser
We present a new theory for the hierarchical clustering of dark matter (DM) halos based on stochastic differential equations, that constitutes a change of perspective with respect to existing frameworks (e.g., the excursion set approach); this work i
Scalar fields coupled to gravity through the Ricci scalar have been considered both as dark matter candidates and as a possible modified gravity explanation for galactic dynamics. It has recently been demonstrated that the dynamics of baryonic matter
The statistics of dark matter halos is an essential component of understanding the nonlinear evolution in modified gravity cosmology. Based on a series of modified gravity N-body simulations, we investigate the halo mass function, concentration and b
We use a large dark matter simulation of a LambdaCDM model to investigate the clustering and environmental dependence of the number of substructures in a halo. Focusing on redshift z=1, we find that the halo occupation distribution is sensitive at th