ﻻ يوجد ملخص باللغة العربية
Aims: In this paper we present a case study to investigate conditions necessary to detect a characteristic magnetic field substructure embedded in a large-scale field. A helical magnetic field with a surrounding hourglass shaped field is expected from theoretical predictions and self-consistent magnetohydrodynamical (MHD) simulations to be present in the specific case of protostellar outflows. Hence, such an outflow environment is the perfect for our study. Methodes: We present synthetic polarisation maps in the infrared and millimeter regime of protostellar outflows performed with the newly developed RT and polarisation code POLARIS. The code, as the first, includes a self-consistent description of various alignement mechanism like the imperfect Davis-Greenstein (IDG) and the radiative torque (RAT) alignment. We investigate for which effects the grain size distribution, and applied alignement mechanism have. Results: We find that the IDG mechanism cannot produce any measurable polarization degree (< 1 %) whereas RAT alignment produced polarization degrees of a few 1 %. Furthermore, we developed a method to identify the origin of the polarization. We show that the helical magnetic field in the outflow can only be observed close to the outflow axis and at its tip, whereas in the surrounding regions the hourglass field in the foreground dominates the polarization. Furthermore, the polarization degree in the outflow lobe is lower than in the surroundings in agreement with observations. We also find that the orientation of the polarization vector flips around a few 100 micron due to the transition from dichroic extinction to thermal re-emission. Hence, in order to avoid ambiguities when interpreting polarization data, we suggest to observed in the far-infrared and mm regime. Finally, we show that with ALMA it is possible to observe the polarization emerging from protostellar outflows.
The 100 square degree FCRAO CO survey of the Taurus molecular cloud provides an excellent opportunity to undertake an unbiased survey of a large, nearby, molecular cloud complex for molecular outflow activity. Our study provides information on the ex
Dust emission is the main foreground for cosmic microwave background (CMB) polarization. Its statistical characterization must be derived from the analysis of observational data because the precision required for a reliable component separation is fa
Chemical modelling of AGB outflows is typically focused on either non-thermodynamic equilibrium chemistry in the inner region or photon-driven chemistry in the outer region. We include, for the first time, a comprehensive dust-gas chemistry in our AG
We present the results of CO ($J=3-2$) and HCO$^+$ ($J=4-3$) mapping observations toward a nearby embedded cluster, Serpens South, using the ASTE 10 m telescope. Our CO ($J=3-2$) map reveals that many outflows are crowded in the dense cluster-forming
With the recent recognition of a second, distinctive class of molecular outflows, namely the explosive ones not directly connected to the accretion-ejection process in the star formation, a juxtaposition of the morphological and kinematic properties