ترغب بنشر مسار تعليمي؟ اضغط هنا

Confinement of the solar tachocline by a cyclic dynamo magnetic field

132   0   0.0 ( 0 )
 نشر من قبل Roxane Barnab\\'e
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The surprising thinness of the solar tachocline is still not understood with certainty today. Among the numerous possible scenarios suggested to explain its radial confinement, one hypothesis is based on Maxwell stresses that are exerted by the cyclic dynamo magnetic field of the Sun penetrating over a skin depth below the turbulent convection zone. Our goal is to assess under which conditions (turbulence level in the tachocline, strength of the dynamo-generated field, spreading mechanism) this scenario can be realized in the solar tachocline. We develop a simplified 1D model of the upper tachocline under the influence of an oscillating magnetic field imposed from above. The turbulent transport is parametrized with enhanced turbulent diffusion (or anti-diffusion) coefficients. Two main processes that thicken the tachocline are considered; either turbulent viscous spreading or radiative spreading. An extensive parameter study is carried out to establish the physical parameter regimes under which magnetic confinement of the tachocline that is due to a surface dynamo field can be realized. We have explored a large range of magnetic field amplitudes, viscosities, ohmic diffusivities and thermal diffusivities. We find that, for large but still realistic magnetic field strengths, the differential rotation can be suppressed in the upper radiative zone (and hence the tachocline confined) if weak turbulence is present (with an enhanced ohmic diffusivity of $eta > 10^{7-8} , cm^2/s$), even in the presence of radiative spreading. Our results show that a dynamo magnetic field can, in the presence of weak turbulence, prevent the inward burrowing of a tachocline subject to viscous diffusion or radiative spreading.



قيم البحث

اقرأ أيضاً

Helioseismic measurements indicate that the solar tachocline is very thin, its full thickness not exceeding 4% of the solar radius. The mechanism that inhibits differential rotation to propagate from the convective zone to deeper into the radiative z one is not known, though several propositions have been made. In this paper we demonstrate by numerical models and analytic estimates that the tachocline can be confined to its observed thickness by a poloidal magnetic field B_p of about one kilogauss, penetrating below the convective zone and oscillating with a period of 22 years, if the tachocline region is turbulent with a diffusivity of eta 10^10 cm^2/s (for a turbulent magnetic Prandtl number of unity). We also show that a similar confinement may be produced for other pairs of the parameter values (B_p, eta). The assumption of the dynamo field penetrating into the tachocline is consistent whenever eta>10^9 cm^2/s.
We investigate the role of magnetic helicity in promoting cyclic magnetic activity in a global, 3D, magnetohydrodynamic (MHD) simulation of a convective dynamo. This simulation is characterized by coherent bands of toroidal field that exist within th e convection zone, with opposite polarities in the northern and southern hemispheres. Throughout most of the cycle, the magnetic helicity in these bands is negative in the northern hemisphere and positive in the southern hemisphere. However, during the declining phase of each cycle, this hemispheric rule reverses. We attribute this to a global restructuring of the magnetic topology that is induced by the interaction of the bands across the equator. This band interaction appears to be ultimately responsible for, or at least associated with, the decay and subsequent reversal of both the toroidal bands and the polar fields. We briefly discuss the implications of these results within the context of solar observations, which also show some potential evidence for toroidal band interactions and helicity reversals.
133 - M. L. DeRosa , A. S. Brun , 2012
The variable magnetic field of the solar photosphere exhibits periodic reversals as a result of dynamo activity occurring within the solar interior. We decompose the surface field as observed by both the Wilcox Solar Observatory and the Michelson Dop pler Imager into its harmonic constituents, and present the time evolution of the mode coefficients for the past three sunspot cycles. The interplay between the various modes is then interpreted from the perspective of general dynamo theory, where the coupling between the primary and secondary families of modes is found to correlate with large-scale polarity reversals for many examples of cyclic dynamos. Mean-field dynamos based on the solar parameter regime are then used to explore how such couplings may result in the various long-term trends in the surface magnetic field observed to occur in the solar case.
Quasi-biennial oscillations (QBO) are frequently observed in the solar activity indices. However, no clear physical mechanism for the observed variations has been suggested so far. Here we study the stability of magnetic Rossby waves in the solar tac hocline using the shallow water magnetohydrodynamic approximation. Our analysis shows that the combination of typical differential rotation and a toroidal magnetic field with a strength > 10^5 G triggers the instability of the m=1 magnetic Rossby wave harmonic with a period of 2 years. This harmonic is antisymmetric with respect to the equator and its period (and growth rate) depends on the differential rotation parameters and the magnetic field strength. The oscillations may cause a periodic magnetic flux emergence at the solar surface and consequently may lead to the observed QBO in the solar activity features. The period of QBO may change throughout the cycle, and from cycle to cycle, due to variations of the mean magnetic field and differential rotation in the tachocline.
We compare spectra of the zonal harmonics of the large-scale magnetic field of the Sun using observation results and solar dynamo models. The main solar activity cycle as recorded in these tracers is a much more complicated phenomenon than the eigen solution of solar dynamo equations with the growth saturated by a back reaction of the dynamo-driven magnetic field on solar hydrodynamics. The nominal 11(22)-year cycle as recorded in each mode has a specific phase shift varying from cycle to cycle; the actual length of the cycle varies from one cycle to another and from tracer to tracer. Both the observation and the dynamo model show an exceptional role of the axisymmetric $ell_{5}$ mode. Its origin seems to be readily connected with the formation and evolution of sunspots on the solar surface. The results of observations and dynamo models show a good agreement for the low $ell_{1}$ and $ell_{3}$ modes. The results for these modes do not differ significantly for the axisymmetric and nonaxisymmetric models. Our findings support the idea that the sources of the solar dynamo arise as a result of both the distributed dynamo processes in the bulk of the convection zone and the surface magnetic activity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا