ترغب بنشر مسار تعليمي؟ اضغط هنا

Does the radial-tangential macroturbulence model adequately describe the spectral line broadening of solar-type stars?

87   0   0.0 ( 0 )
 نشر من قبل Yoichi Takeda
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In incorporating the effect of atmospheric turbulence in the broadening of spectral lines, the so-called radial-tangential macroturbulence (RTM) model has been widely used in the field of solar-type stars, which was devised from an intuitive appearance of granular velocity field of the Sun. Since this model assumes that turbulent motions are restricted to only radial and tangential directions, it has a special broadening function with notably narrow width due to the projection effect, the validity of which has not yet been confirmed in practice. With an aim to check whether this RTM model adequately represents the actual solar photospheric velocity field, we carried out an extensive study on the non-thermal velocity dispersion along the line-of-sight (V_los) by analyzing spectral lines at various points of the solar disk based on locally-averaged as well as high spatial-resolution spectra, and found the following results. First, the center-to-limb run of V_los derived from ground-based low-resolution spectra is simply monotonic with a slightly increasing tendency, which contradicts the specific trend (an appreciable peak at theta~45 deg) predicted from RTM. Second, the V_los values derived from a large number of spectra based on high-resolution space observation revealed to follow a nearly normal distribution, without any sign of peculiar distribution expected for the RTM case. These two observational facts indicate that the actual solar velocity field is not such simply dichotomous as assumed in RTM, but directionally more chaotic. We thus conclude that RTM is not an adequate model at least for solar-type stars, which would significantly overestimate the turbulent velocity dispersion by a factor of ~2. The classical Gaussian macroturbulence model should be more reasonable in this respect.



قيم البحث

اقرأ أيضاً

103 - M. Krief , A. Feigel , D. Gazit 2016
The calculation of line widths constitutes theoretical and computational challenges in the calculation of opacities of hot dense plasmas. Opacity models use line broadening approximations that are untested at stellar interior conditions. Moreover, ca lculations of atomic spectra of the sun, indicate a large discrepancy in the K-shell line widths between several atomic codes and the OP. In this work, the atomic code STAR is used to study the sensitivity of solar opacities to line-broadening. Variations in the solar opacity profile, due to an increase of the Stark widths resulting from discrepancies with OP, are compared, in light of the solar opacity problem, with the required opacity variations of the present day sun, as imposed by helioseismic and neutrino observations. The resulting variation profile, is much larger than the discrepancy between different atomic codes, agrees qualitatively with the missing opacity profile, recovers about half of the missing opacity nearby the convection boundary and has a little effect in the internal regions. Since it is hard to estimate quantitatively the uncertainty in the Stark widths, we show that an increase of all line widths by a factor of about 100 recovers quantitatively the missing opacity. These results emphasize the possibility that photoexcitation processes are not modeled properly, and more specifically, highlight the need for a better theoretical characterization of the line broadening phenomena at stellar interior conditions and of the uncertainty due to the way it is implemented by atomic codes.
In the quiet regions on the solar surface, turbulent convective motions of granulation play an important role in creating small-scale magnetic structures, as well as in energy injection into the upper atmosphere. The turbulent nature of granulation c an be studied using spectral line profiles, especially line broadening, which contains information on the flow field smaller than the spatial resolution of an instrument. Moreover, the Doppler velocity gradient along a line-of-sight (LOS) causes line broadening as well. However, the quantitative relationship between velocity gradient and line broadening has not been understood well. In this study, we perform bisector analyses using the spectral profiles obtained using the Spectro-Polarimeter of the Hinode/Solar Optical Telescope to investigate the relationship of line broadening and bisector velocities with the granulation flows. The results indicate that line broadening has a positive correlation with the Doppler velocity gradients along the LOS. We found excessive line broadening in fading granules, that cannot be explained only by the LOS velocity gradient, although the velocity gradient is enhanced in the process of fading. If this excessive line broadening is attributed to small-scale turbulent motions, the averaged turbulent velocity is obtained as 0.9 km/s.
The broadening of the hydrogen lines during flares is thought to result from increased charge (electron, proton) density in the flare chromosphere. However, disagreements between theory and modeling prescriptions have precluded an accurate diagnostic of the degree of ionization and compression resulting from flare heating in the chromosphere. To resolve this issue, we have incorporated the unified theory of electric pressure broadening of the hydrogen lines into the non-LTE radiative transfer code RH. This broadening prescription produces a much more realistic spectrum of the quiescent, A0 star Vega compared to the analytic approximations used as a damping parameter in the Voigt profiles. We test recent radiative-hydrodynamic (RHD) simulations of the atmospheric response to high nonthermal electron beam fluxes with the new broadening prescription and find that the Balmer lines are over-broadened at the densest times in the simulations. Adding many simultaneously heated and cooling model loops as a multithread model improves the agreement with the observations. We revisit the three-component phenomenological flare model of the YZ CMi Megaflare using recent and new RHD models. The evolution of the broadening, line flux ratios, and continuum flux ratios are well-reproduced by a multithread model with high-flux nonthermal electron beam heating, an extended decay phase model, and a hot spot atmosphere heated by an ultrarelativistic electron beam with reasonable filling factors: 0.1%, 1%, and 0.1% of the visible stellar hemisphere, respectively. The new modeling motivates future work to understand the origin of the extended gradual phase emission.
We have observed 152 nearby solar-type stars with the Infrared Spectrometer (IRS) on the Spitzer Space Telescope. Including stars that met our criteria but were observed in other surveys, we get an overall success rate for finding excesses in the lon g wavelength IRS band (30-34 micron) of 11.8% +/- 2.4%. The success rate for excesses in the short wavelength band (8.5-12 micron) is ~1% including sources from other surveys. For stars with no excess at 8.5-12 microns, the IRS data set 3 sigma limits of around 1,000 times the level of zodiacal emission present in our solar system, while at 30-34 microns set limits of around 100 times the level of our solar system. Two stars (HD 40136 and HD 10647) show weak evidence for spectral features; the excess emission in the other systems is featureless. If the emitting material consists of large (10 micron) grains as implied by the lack of spectral features, we find that these grains are typically located at or beyond the snow line, ~1-35 AU from the host stars, with an average distance of 14 +/- 6 AU; however smaller grains could be located at significantly greater distances from the host stars. These distances correspond to dust temperatures in the range ~50-450 K. Several of the disks are well modeled by a single dust temperature, possibly indicative of a ring-like structure. However, a single dust temperature does not match the data for other disks in the sample, implying a distribution of temperatures within these disks. For most stars with excesses, we detect an excess at both IRS and MIPS wavelengths. Only three stars in this sample show a MIPS 70 micron excess with no IRS excess, implying that very cold dust is rare around solar-type stars.
Line-intensity mapping observations will find fluctuations of integrated line emission are attenuated by varying degrees at small scales due to the width of the line emission profiles. This attenuation may significantly impact estimates of astrophysi cal or cosmological quantities derived from measurements. We consider a theoretical treatment of the effect of line broadening on both the clustering and shot-noise components of the power spectrum of a generic line-intensity power spectrum using a halo model. We then consider possible simplifications to allow easier application in analysis, particularly in the context of inferences that require numerous, repeated, fast computations of model line-intensity signals across a large parameter space. For the CO Mapping Array Project (COMAP) and the CO(1-0) line-intensity field at $zsim3$ serving as our primary case study, we expect a $sim10%$ attenuation of the spherically averaged power spectrum on average at relevant scales of $kapprox0.2$-$0.3$ Mpc$^{-1}$, compared to $sim25%$ for the interferometric Millimetre-wave Intensity Mapping Experiment (mmIME) targeting shot noise from CO lines at $zsim1$-$5$ at scales of $kgtrsim1$ Mpc$^{-1}$. We also consider the nature and amplitude of errors introduced by simplified treatments of line broadening, and find that while an approximation using a single effective velocity scale is sufficient for spherically-averaged power spectra, a more careful treatment is necessary when considering other statistics such as higher multipoles of the anisotropic power spectrum or the voxel intensity distribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا