ﻻ يوجد ملخص باللغة العربية
In incorporating the effect of atmospheric turbulence in the broadening of spectral lines, the so-called radial-tangential macroturbulence (RTM) model has been widely used in the field of solar-type stars, which was devised from an intuitive appearance of granular velocity field of the Sun. Since this model assumes that turbulent motions are restricted to only radial and tangential directions, it has a special broadening function with notably narrow width due to the projection effect, the validity of which has not yet been confirmed in practice. With an aim to check whether this RTM model adequately represents the actual solar photospheric velocity field, we carried out an extensive study on the non-thermal velocity dispersion along the line-of-sight (V_los) by analyzing spectral lines at various points of the solar disk based on locally-averaged as well as high spatial-resolution spectra, and found the following results. First, the center-to-limb run of V_los derived from ground-based low-resolution spectra is simply monotonic with a slightly increasing tendency, which contradicts the specific trend (an appreciable peak at theta~45 deg) predicted from RTM. Second, the V_los values derived from a large number of spectra based on high-resolution space observation revealed to follow a nearly normal distribution, without any sign of peculiar distribution expected for the RTM case. These two observational facts indicate that the actual solar velocity field is not such simply dichotomous as assumed in RTM, but directionally more chaotic. We thus conclude that RTM is not an adequate model at least for solar-type stars, which would significantly overestimate the turbulent velocity dispersion by a factor of ~2. The classical Gaussian macroturbulence model should be more reasonable in this respect.
The calculation of line widths constitutes theoretical and computational challenges in the calculation of opacities of hot dense plasmas. Opacity models use line broadening approximations that are untested at stellar interior conditions. Moreover, ca
In the quiet regions on the solar surface, turbulent convective motions of granulation play an important role in creating small-scale magnetic structures, as well as in energy injection into the upper atmosphere. The turbulent nature of granulation c
The broadening of the hydrogen lines during flares is thought to result from increased charge (electron, proton) density in the flare chromosphere. However, disagreements between theory and modeling prescriptions have precluded an accurate diagnostic
We have observed 152 nearby solar-type stars with the Infrared Spectrometer (IRS) on the Spitzer Space Telescope. Including stars that met our criteria but were observed in other surveys, we get an overall success rate for finding excesses in the lon
Line-intensity mapping observations will find fluctuations of integrated line emission are attenuated by varying degrees at small scales due to the width of the line emission profiles. This attenuation may significantly impact estimates of astrophysi