ترغب بنشر مسار تعليمي؟ اضغط هنا

New Resonances at LHC are possible. Multiple Point Principle and New Bound States in the Standard Model

91   0   0.0 ( 0 )
 نشر من قبل Chitta Ranjan Das
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the present paper we argue that the correction to the Higgs mass coming from the bound state of 6 top and 6 anti-top quarks, predicted early by C.D. Froggatt, H.B. Nielsen and L.V. Laperashvili, leads to the Standard Model (SM) vacuum stability and confirms the accuracy of the multiple point principle (principle of degenerate vacua) for all experimentally valued SM parameters (Higgs mass, top-quark mass, etc.). The aim to get the vacua degeneracy requires a mass of the bound state in the region of 770 GeV.



قيم البحث

اقرأ أيضاً

In the present paper we argue that the correction to the Higgs mass coming from the bound state of 6 top and 6 anti-top quarks, predicted early by C.D. Froggatt and ourselves, leads to the Standard Model vacuum stability and confirms the accuracy of the multiple point principle (principle of degenerate vacua) for all experimentally valued parameters (Higgs mass, top-quark mass, etc.). Fitting to get the vacuum degeneracy requires a mass of the bound state, just in the region of the new two photon state in LHC, 750-760 GeV.
The present paper is based on the assumption that heavy quarks bound states exist in the Standard Model (SM). Considering New Bound States (NBS) of top-anti-top quarks (named T-balls) we have shown that: 1) there exists the scalar 1S--bound state of $6t+6bar t$; 2) the forces which bind the top-quarks are very strong and almost completely compensate the mass of the twelve top-anti-top-quarks in the scalar NBS; 3) such strong forces are produced by the Higgs-top-quarks interaction with a large value of the top-quark Yukawa coupling constant $g_tsimeq 1$. Theory also predicts the existence of the NBS $6t + 5bar t$, which is a color triplet and a fermion similar to the $t$-quark of the fourth generation. We have also considered the b-quark-replaced NBS, estimated the masses of the lightest fermionic NBS: $M_{NBS}gtrsim 300$ GeV, and discussed the larger masses of T-balls. We have developed a theory of the scalar T-balls condensate and predicted the existence of three SM phases. Searching for heavy quark bound states at the Tevatron and LHC is discussed. We have constructed the possible form-factors of T-balls, and estimated the charge multiplicity coming from the T-balls decays.
90 - Yuta Hamada , Gary Shiu 2017
The requirement for an ultraviolet completable theory to be well-behaved upon compactification has been suggested as a guiding principle for distinguishing the landscape from the swampland. Motivated by the weak gravity conjecture and the multiple po int principle, we investigate the vacuum structure of the standard model compactified on $S^1$ and $T^2$. The measured value of the Higgs mass implies, in addition to the electroweak vacuum, the existence of a new vacuum where the Higgs field value is around the Planck scale. We explore two- and three-dimensional critical points of the moduli potential arising from compactifications of the electroweak vacuum as well as this high scale vacuum, in the presence of Majorana/Dirac neutrinos and/or axions. We point out potential sources of instability for these lower dimensional critical points in the standard model landscape. We also point out that a high scale $AdS_4$ vacuum of the Standard Model, if exists, would be at odd with the conjecture that all non-supersymmetric $AdS$ vacua are unstable. We argue that, if we require a degeneracy between three- and four-dimensional vacua as suggested by the multiple point principle, the neutrinos are predicted to be Dirac, with the mass of the lightest neutrino O(1-10) meV, which may be tested by future CMB, large scale structure and $21$cm line observations.
If an excess potentially heralding new physics is noticed in collider data, it would be useful to be able to compare the data with entire classes of models at once. This talk discusses a method that applies when the new physics corresponds to the pro duction and decay of a single, relatively narrow, s-channel resonance. A simplifed model of the resonance allows us to convert an estimated signal cross section into model-independent bounds on the product of the branching ratios corresponding to production and decay. This quickly reveals whether a given class of models could possibly produce a signal of the observed size. We will describe how to apply our analysis framework to cases of current experimental interest, including resonances decaying to dibosons, diphotons, dileptons, or dijets.
106 - M. Baak , M. Goebel , J. Haller 2012
In view of the discovery of a new boson by the ATLAS and CMS Collaborations at the LHC, we present an update of the global Standard Model (SM) fit to electroweak precision data. Assuming the new particle to be the SM Higgs boson, all fundamental para meters of the SM are known allowing, for the first time, to overconstrain the SM at the electroweak scale and assert its validity. Including the effects of radiative corrections and the experimental and theoretical uncertainties, the global fit exhibits a p-value of 0.07. The mass measurements by ATLAS and CMS agree within 1.3sigma with the indirect determination M_H=(94 +25 -22) GeV. Within the SM the W boson mass and the effective weak mixing angle can be accurately predicted to be M_W=(80.359 +- 0.011) GeV and sin^2(theta_eff^ell)=(0.23150 +- 0.00010) from the global fit. These results are compatible with, and exceed in precision, the direct measurements. For the indirect determination of the top quark mass we find m_t=(175.8 +2.7 -2.4) GeV, in agreement with the kinematic and cross-section based measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا