ﻻ يوجد ملخص باللغة العربية
In the present paper we argue that the correction to the Higgs mass coming from the bound state of 6 top and 6 anti-top quarks, predicted early by C.D. Froggatt, H.B. Nielsen and L.V. Laperashvili, leads to the Standard Model (SM) vacuum stability and confirms the accuracy of the multiple point principle (principle of degenerate vacua) for all experimentally valued SM parameters (Higgs mass, top-quark mass, etc.). The aim to get the vacua degeneracy requires a mass of the bound state in the region of 770 GeV.
In the present paper we argue that the correction to the Higgs mass coming from the bound state of 6 top and 6 anti-top quarks, predicted early by C.D. Froggatt and ourselves, leads to the Standard Model vacuum stability and confirms the accuracy of
The present paper is based on the assumption that heavy quarks bound states exist in the Standard Model (SM). Considering New Bound States (NBS) of top-anti-top quarks (named T-balls) we have shown that: 1) there exists the scalar 1S--bound state of
The requirement for an ultraviolet completable theory to be well-behaved upon compactification has been suggested as a guiding principle for distinguishing the landscape from the swampland. Motivated by the weak gravity conjecture and the multiple po
If an excess potentially heralding new physics is noticed in collider data, it would be useful to be able to compare the data with entire classes of models at once. This talk discusses a method that applies when the new physics corresponds to the pro
In view of the discovery of a new boson by the ATLAS and CMS Collaborations at the LHC, we present an update of the global Standard Model (SM) fit to electroweak precision data. Assuming the new particle to be the SM Higgs boson, all fundamental para