ﻻ يوجد ملخص باللغة العربية
The Euclidean TSP with neighborhoods (TSPN) problem seeks a shortest tour that visits a given collection of $n$ regions ({em neighborhoods}). We present the first polynomial-time approximation scheme for TSPN for a set of regions given by arbitrary disjoint fat regions in the plane. This improves substantially upon the known approximation algorithms, and is the first PTAS for TSPN on regions of non-comparable sizes. Our result is based on a novel extension of the $m$-guillotine method. The result applies to regions that are fat in a very weak sense: each region $P_i$ has area $Omega([diam(P_i)]^2)$, but is otherwise arbitrary.
In the Euclidean TSP with neighborhoods (TSPN), we are given a collection of n regions (neighborhoods) and we seek a shortest tour that visits each region. As a generalization of the classical Euclidean TSP, TSPN is also NP-hard. In this paper, we pr
Given a set of pairwise disjoint polygonal obstacles in the plane, finding an obstacle-avoiding Euclidean shortest path between two points is a classical problem in computational geometry and has been studied extensively. The previous best algorithm
In this paper we study a natural special case of the Traveling Salesman Problem (TSP) with point-locational-uncertainty which we will call the {em adversarial TSP} problem (ATSP). Given a metric space $(X, d)$ and a set of subsets $R = {R_1, R_2, ...
We consider the problem of partitioning the set of vertices of a given unit disk graph (UDG) into a minimum number of cliques. The problem is NP-hard and various constant factor approximations are known, with the current best ratio of 3. Our main res
In this extended abstract, we present a PTAS for guarding the vertices of a weakly-visible polygon $P$ from a subset of its vertices, or in other words, a PTAS for computing a minimum dominating set of the visibility graph of the vertices of $P$. We