ترغب بنشر مسار تعليمي؟ اضغط هنا

An advanced three-axis elliptical hohlraum for indirectly driven inertial confinement fusion

218   0   0.0 ( 0 )
 نشر من قبل Hang Li
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The radiation symmetry and laser-plasma instabilities (LPIs) inside the conventional cylindrical hohlraum configuration are the two daunting challenges on the approach to ignition in indirectly driven inertial confinement fusion. Recently, near-vacuum cylindrical hohlraum (NVCH), octahedral spherical hohlraum (SH) and novel three-axis cylindrical hohlraum (TACH) were proposed to mitigate these issues. While the coupling efficiency might still be a critical risk. In this paper, an advanced three-axis elliptical hohlraum (TAEH) is proposed to make a compromise among these hohlraum performance. Preliminary simulations indicate that the TAEH (with a case-to-capsule ratio, CCR=2.8) could provide excellent radiation symmetry during the thorough laser pulse of the high-foot drive, comparable to the ones inside the SH (CCR=5.1) and TACH (CCR=2.2). The filling time of plasma affecting the LPIs is between those of SH and TACH, and about 1.5 times of that in the ignition hohlraum Rev5-CH of NIC and close to the one inside the NVCH (CCR=3.4). In particular, the coupling efficiency is about 22%, 29% and 17% higher than the one inside the NVCH, SH and TACH, respectively. It would be envisioned that the proposed hohlraum configuration merits consideration as an alternative route to indirect-drive ignition, complementary to the traditional cylindrical hohlraum and the proposed recently novel hohlraums.



قيم البحث

اقرأ أيضاً

A novel ignition hohlraum for indirect-drive inertial confinement fusion is proposed, which is named as three-axis cylindrical hohlraum (TACH). TACH is a kind of 6 laser entrance holes (LEHs) hohlraum, which is made of three cylindrical hohlraums ort hogonally jointed. Laser beams are injected through every entrance hole with the same incident angle of 55{deg}. The view-factor simulation result shows that the time-varying drive asymmetry of TACH is no more than 1.0% in the whole drive pulse period without any supplementary technology such as beam phasing etc. Its coupling efficiency of TACH is close to that of 6 LEHs spherical hohlraum with corresponding size. Its plasma-filling time is close to typical cylindrical ignition hohlraum. Its laser plasma interaction has as low backscattering as the outer cone of the cylindrical ignition hohlraum. Therefore, the proposed hohlraum provides a competitive candidate for ignition hohlraum.
Neutron penumbral imaging technique has been successfully used as the diagnosis method in Inertial Confined Fusion. To help the design of the imaging systems in the future in CHINA. We construct the Monte carlo imaging system by Geant4. Use the point spread function from the simulation and decode algorithm (Lucy-Rechardson algorithm) we got the recovery image.
Engineering features are known to cause jets of ablator material to enter the fuel hot-spot in inertial confinement fusion implosions. The Biermann battery mechanism wraps them in self-generated magnetic field. We show that higher-Z jets have an addi tional thermoelectric magnetic source term that is not present for hydrogen jets, verified here through a kinetic simulation. It has similar magnitude to the Biermann term. We then include this in an extended magneto-hydrodynamics approach to post-process an xRAGE radiation-hydrodynamic implosion simulation. The simulation includes an accurate model for the capsule fill tube, producing a dense carbon jet that becomes wrapped in a 4000T magnetic field. A simple spherical carbon mix model shows that this insulates the electron heat conduction enough to cause contraction of the jet to an optically thick equilibrium. The denser magnetized jet hydrodynamics could change its core penetration and therefore the final mix mass, which is known to be well correlated with fusion yield degradation. Fully exploring this will require self-consistent magneto-hydrodynamic simulations. Experimental signatures of this self-magnetization may emerge in the high energy neutron spectrum.
127 - X. T. He , Z. F. Fan , J. W. Li 2015
An indirect-direct hybrid-drive work-dominated hotspot ignition scheme for inertial confinement fusion is proposed: a layered fuel capsule inside a spherical hohlraum with an octahedral symmetry is compressed first by indirect-drive soft-x rays (radi ation) and then by direct-drive lasers in last pulse duration. In this scheme, an enhanced shock and a follow-up compression wave for ignition with pressure far greater than the radiation ablation pressure are driven by the direct-drive lasers, and provide large pdV work to the hotspot to perform the work-dominated ignition. The numerical simulations show that the enhanced shock stops the reflections of indirect-drive shock at the main fuel-hotspot interface, and therefore significantly suppresses the hydrodynamic instabilities and asymmetry. Based on the indirect-drive implosion dynamics the hotspot is further compressed and heated by the enhanced shock and follow-up compression wave, resulting in the work-dominated hotspot ignition and burn with a maximal implosion velocity of ~400 km/s and a lower convergence ratio of ~25. The fusion yield of 15 MJ using total laser energy of 1.32 MJ is achieved.
Heavy ion inertial fusion (HIF) energy would be one of promising energy resources securing our future energy in order to sustain our human life for centuries and beyond. The heavy ion beam (HIB) has remarkable preferable features to release the fusio n energy in inertial confinement fusion: in particle accelerators HIBs are generated with a high driver efficiency of ~ 30-40%, and the HIB ions deposit their energy inside of materials. Therefore, a requirement for the fusion target energy gain is relatively low, that would be ~50-70 to operate a HIF fusion reactor with the standard energy output of 1GW of electricity. The HIF reactor operation frequency would be ~10~15 Hz or so. Several-MJ HIBs illuminate a fusion fuel target, and the fuel target is imploded to about a thousand times of the solid density. Then the DT fuel is ignited and burned. The HIB ion deposition range would be ~0.5-1 mm or so depending on the material. Therefore, a relatively large density-scale length appears in the fuel target material. The large density-gradient-scale length helps to reduce the Rayleigh-Taylor (R-T) growth rate. The key merits in HIF physics are presented in the article toward our bright future energy resource.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا