ﻻ يوجد ملخص باللغة العربية
The recent Advanced LIGO detections of coalescing black hole binaries (BHBs) imply a large population of such systems emitting at milli-Hz frequencies, accessible to the Laser Interferometer Space Antenna (LISA). We show that these systems provide a new class of cosmological standard sirens. Direct LISA luminosity distance -$D_l$- measurements, combined with the inhomogeneous redshift -$z$- distribution of possible host galaxies provide an effective way to populate the $D_l-z$ diagram at $z<0.1$, thus allowing a precise local measurement of the Hubble expansion rate. To be effective, the method requires a sufficiently precise LISA distance determination and sky localization of a sizeable number of BHBs, which is best achieved for a 6-link detector configuration. We find that, for a BHB population consistent with current fiducial LIGO rates, the Hubble constant $H_0$ can be determined at the $sim$5% and $sim$2% level (68% confidence) assuming two and five million Km arm-length respectively.
Quasars have recently been used as an absolute distance indicator, extending the Hubble diagram to high redshift to reveal a deviation from the expansion history predicted for the standard, $Lambda$CDM cosmology. Here we show that the Laser Interfero
Modifications of General Relativity leave their imprint both on the cosmic expansion history through a non-trivial dark energy equation of state, and on the evolution of cosmological perturbations in the scalar and in the tensor sectors. In particula
The tidal force from a third body near a binary system could introduce long-term oscillations in the binarys eccentricity, known as Kozai-Lidov oscillations. We show that the Kozai-Lidov oscillations of stellar-mass black hole binaries have the poten
Gravitational waves (GWs) directly measure the luminosity distance to the merger, which, when combined with an independent measurement of the sources redshift, provides a novel probe of cosmology. The proposed next generation of ground-based GW detec
An interesting test on the nature of the Universe is to measure the global spatial curvature of the metric in a model independent way, at a level of $|Omega_k|<10^{-4}$, or, if possible, at the cosmic variance level of the amplitude of the CMB fluctu