ﻻ يوجد ملخص باللغة العربية
Motivated by emerging applications to the edge computing paradigm, we introduce a two-layer erasure-coded fault-tolerant distributed storage system offering atomic access for read and write operations. In edge computing, clients interact with an edge-layer of servers that is geographically near; the edge-layer in turn interacts with a back-end layer of servers. The edge-layer provides low latency access and temporary storage for client operations, and uses the back-end layer for persistent storage. Our algorithm, termed Layered Data Storage (LDS) algorithm, offers several features suitable for edge-computing systems, works under asynchronous message-passing environments, supports multiple readers and writers, and can tolerate $f_1 < n_1/2$ and $f_2 < n_2/3$ crash failures in the two layers having $n_1$ and $n_2$ servers, respectively. We use a class of erasure codes known as regenerating codes for storage of data in the back-end layer. The choice of regenerating codes, instead of popular choices like Reed-Solomon codes, not only optimizes the cost of back-end storage, but also helps in optimizing communication cost of read operations, when the value needs to be recreated all the way from the back-end. The two-layer architecture permits a modular implementation of atomicity and erasure-code protocols; the implementation of erasure-codes is mostly limited to interaction between the two layers. We prove liveness and atomicity of LDS, and also compute performance costs associated with read and write operations. Further, in a multi-object system running $N$ independent instances of LDS, where only a small fraction of the objects undergo concurrent accesses at any point during the execution, the overall storage cost is dominated by that of persistent storage in the back-end layer, and is given by $Theta(N)$.
Atomicity or strong consistency is one of the fundamental, most intuitive, and hardest to provide primitives in distributed shared memory emulations. To ensure survivability, scalability, and availability of a storage service in the presence of failu
Erasure codes are increasingly being studied in the context of implementing atomic memory objects in large scale asynchronous distributed storage systems. When compared with the traditional replication based schemes, erasure codes have the potential
Erasure codes are an integral part of many distributed storage systems aimed at Big Data, since they provide high fault-tolerance for low overheads. However, traditional erasure codes are inefficient on reading stored data in degraded environments (w
To achieve reliability in distributed storage systems, data has usually been replicated across different nodes. However the increasing volume of data to be stored has motivated the introduction of erasure codes, a storage efficient alternative to rep
The growing size of modern datasets necessitates splitting a large scale computation into smaller computations and operate in a distributed manner. Adversaries in a distributed system deliberately send erroneous data in order to affect the computatio