ﻻ يوجد ملخص باللغة العربية
Let $W^{1,n} ( mathbb{R}^{n} $ be the standard Sobolev space and $leftVert cdotrightVert _{n}$ be the $L^{n}$ norm on $mathbb{R}^n$. We establish a sharp form of the following Trudinger-Moser inequality involving the $L^{n}$ norm [ underset{leftVert urightVert _{W^{1,n}left(mathbb{R} ^{n}right) }=1}{sup}int_{ mathbb{R}^{n}}Phileft( alpha_{n}leftvert urightvert ^{frac{n}{n-1}}left( 1+alphaleftVert urightVert _{n}^{n}right) ^{frac{1}{n-1}}right) dx<+infty ]in the entire space $mathbb{R}^n$ for any $0leqalpha<1$, where $Phileft( tright) =e^{t}-underset{j=0}{overset{n-2}{sum}}% frac{t^{j}}{j!}$, $alpha_{n}=nomega_{n-1}^{frac{1}{n-1}}$ and $omega_{n-1}$ is the $n-1$ dimensional surface measure of the unit ball in $mathbb{R}^n$. We also show that the above supremum is infinity for all $alphageq1$. Moreover, we prove the supremum is attained, namely, there exists a maximizer for the above supremum when $alpha>0$ is sufficiently small. The proof is based on the method of blow-up analysis of the nonlinear Euler-Lagrange equations of the Trudinger-Moser functionals. Our result sharpens the recent work cite{J. M. do1} in which they show that the above inequality holds in a weaker form when $Phi(t)$ is replaced by a strictly smaller $Phi^*(t)=e^{t}-underset{j=0}{overset{n-1}{sum}}% frac{t^{j}}{j!}$. (Note that $Phi(t)=Phi^*(t)+frac{t^{n-1}}{(n-1)!}$).
Suppose $F: mathbb{R}^{N} rightarrow [0, +infty)$ be a convex function of class $C^{2}(mathbb{R}^{N} backslash {0})$ which is even and positively homogeneous of degree 1. We denote $gamma_1=inflimits_{uin W^{1, N}_{0}(Omega)backslash {0}}frac{int_{Om
We establish the Trudinger-Moser inequality on weighted Sobolev spaces in the whole space, and for a class of quasilinear elliptic operators in radial form of the type $displaystyle Lu:=-r^{-theta}(r^{alpha}vert u(r)vert^{beta}u(r))$, where $theta, b
We give a new proof of the almost sharp Moser-Trudinger inequality on compact Riemannian manifolds based on the sharp Moser inequality on Euclidean spaces. In particular we can lower the smoothness requirement of the metric and apply the same approac
Wang and Ye conjectured in [22]: Let $Omega$ be a regular, bounded and convex domain in $mathbb{R}^{2}$. There exists a finite constant $C({Omega})>0$ such that [ int_{Omega}e^{frac{4pi u^{2}}{H_{d}(u)}}dxdyle C(Omega),;;forall uin C^{infty}_{0}(Om
Consider a nonlinear Kirchhoff type equation as follows begin{equation*} left{ begin{array}{ll} -left( aint_{mathbb{R}^{N}}| abla u|^{2}dx+bright) Delta u+u=f(x)leftvert urightvert ^{p-2}u & text{ in }mathbb{R}^{N}, uin H^{1}(mathbb{R}^{N}), & end{a