ﻻ يوجد ملخص باللغة العربية
In order to achieve the high-fidelity quantum control needed for a broad range of quantum information technologies, reducing the effects of noise and system inhomogeneities is an essential task. It is well known that a system can be decoupled from noise or made insensitive to inhomogeneous dephasing dynamically by using carefully designed pulse sequences based on square or delta-function waveforms such as Hahn spin echo or CPMG. However, such ideal pulses are often challenging to implement experimentally with high fidelity. Here, we uncover a new geometrical framework for visualizing all possible driving fields, which enables one to generate an unlimited number of smooth, experimentally feasible pulses that perform dynamical decoupling or dynamically corrected gates to arbitrarily high order. We demonstrate that this scheme can significantly enhance the fidelity of single-qubit operations in the presence of noise and when realistic limitations on pulse rise times and amplitudes are taken into account.
We demonstrate that CPMG and XYXY decoupling sequences with non-ideal $pi$ pulses can reduce dipolar interactions between spins of the same species in solids. Our simulations of pulsed electron spin resonance (ESR) experiments show that $pi$ rotation
We use multi-pulse dynamical decoupling to increase the coherence lifetime (T2) of large numbers of nitrogen-vacancy (NV) electronic spins in room temperature diamond, thus enabling scalable applications of multi-spin quantum information processing a
We implement dynamical decoupling techniques to mitigate noise and enhance the lifetime of an entangled state that is formed in a superconducting flux qubit coupled to a microscopic two-level system. By rapidly changing the qubits transition frequenc
In addition to magnetic field and electric charge noise adversely affecting spin qubit operations, performing single-qubit gates on one of multiple coupled singlet-triplet qubits presents a new challenge---crosstalk, which is inevitable (and must be
Using micromagnets to enable electron spin manipulation in silicon qubits has emerged as a very popular method, enabling single-qubit gate fidelities larger than 99:9%. However, these micromagnets also apply stray magnetic field gradients onto the qu