ﻻ يوجد ملخص باللغة العربية
We study realizations of Lie algebras by vector fields. A correspondence between classification of transitive local realizations and classification of subalgebras is generalized to the case of regular local realizations. A reasonable classification problem for general realizations is rigorously formulated and an algorithm for construction of such classification is presented.
Essentially generalizing Lies results, we prove that the contact equivalence groupoid of a class of (1+1)-dimensional generalized nonlinear Klein-Gordon equations is the first-order prolongation of its point equivalence groupoid, and then we carry ou
A special symplectic Lie group is a triple $(G,omega, abla)$ such that $G$ is a finite-dimensional real Lie group and $omega$ is a left invariant symplectic form on $G$ which is parallel with respect to a left invariant affine structure $ abla$. In t
A complete set of inequivalent realizations of three- and four-dimensional real unsolvable Lie algebras in vector fields on a space of an arbitrary (finite) number of variables is obtained.
The topological classification of gerbes, as principal bundles with the structure group the projective unitary group of a complex Hilbert space, over a topological space $H$ is given by the third cohomology $text{H}^3(H, Bbb Z)$. When $H$ is a topolo
There is a decomposition of a Lie algebra for open matrix chains akin to the triangular decomposition. We use this decomposition to construct unitary irreducible representations. All multiple meson states can be retrieved this way. Moreover, they are