ﻻ يوجد ملخص باللغة العربية
Massive O-type stars play a dominant role in our Universe, but many of their properties remain poorly constrained. In the last decade magnetic fields have been detected in all Galactic members of the distinctive Of?p class, opening the door to a better knowledge of all O-type stars. With the aim of extending the study of magnetic massive stars to nearby galaxies, to better understand the role of metallicity in the formation of their magnetic fields and magnetospheres, and to broaden our knowledge of the role of magnetic fields in massive star evolution, we have carried out spectropolarimetry of five extra-Galactic Of?p stars, as well as a couple of dozen neighbouring stars. We have been able to measure magnetic fields with typical error bars from 0.2 to 1.0 kG, depending on the apparent magnitude and on weather conditions. No magnetic field has been firmly detected in any of our measurements, but we have been able to estimate upper limits to the field values of our target stars. One of our targets, 2dFS 936, exhibited an unexpected strengthening of emission lines. We confirm the unusual behaviour of BI 57, which exhibits a 787 d period with two photometric peaks and one spectroscopic maximum. The observed strengthening of the emission lines of 2dFS 936, and the lack of detection of a strong magnetic field in a star with such strong emission lines is at odd with expectations. Together with the unusual periodic behaviour of BI 57, it represents a challenge for the current models of Of?p stars. The limited precision that we obtained in our field measurements (in most cases as a consequence of poor weather) has led to field-strength upper limits that are substantially larger than those typically measured in Galactic magnetic O stars. Further higher precision observations and monitoring are clearly required.
All known Galactic Of?p stars have been shown to host strong, organized, magnetic fields. Recently, five Of?p stars have been discovered in the Magellanic Clouds. They posses photometric citep{Naze} and spectroscopic citep{Walborn} variability compat
We obtained new spectra of fourteen Magellanic Cloud planetary nebulae with the South African Large Telescope to determine heating rates of their central stars and to verify evolutionary models of post-asymptotic giant branch stars. We compared new s
We present results of our study of the infrared properties of massive stars in the Large and Small Magellanic Clouds, which are based on the Spitzer SAGE surveys of these galaxies. We have compiled catalogs of spectroscopically confirmed massive star
A high percentage of the astrophysically important RR Lyrae stars show a periodic amplitude and/or phase modulation of their pulsation cycles. More than a century after its discovery, this Blazhko effect still lacks acceptable theoretical understandi
Using observations from the {em Herschel} Inventory of The Agents of Galaxy Evolution (HERITAGE) survey of the Magellanic Clouds, we have found thirty five evolved stars and stellar end products that are bright in the far-infrared. These twenty eight