ترغب بنشر مسار تعليمي؟ اضغط هنا

Interlayer exciton dynamics in a dichalcogenide monolayer heterostructure

242   0   0.0 ( 0 )
 نشر من قبل Tobias Korn
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In heterostructures consisting of different transition-metal dichalcogenide monolayers, a staggered band alignment can occur, leading to rapid charge separation of optically generated electron-hole pairs into opposite monolayers. These spatially separated electron-hole pairs are Coulomb-coupled and form interlayer excitons. Here, we study these interlayer excitons in a heterostructure consisting of MoSe$_2$ and WSe$_2$ monolayers using photoluminescence spectroscopy. We observe a non-trivial temperature dependence of the linewidth and the peak energy of the interlayer exciton, including an unusually strong initial redshift of the transition with temperature, as well as a pronounced blueshift of the emission energy with increasing excitation power. By combining these observations with time-resolved photoluminescence measurements, we are able to explain the observed behavior as a combination of interlayer exciton diffusion and dipolar, repulsive exciton-exciton interaction.



قيم البحث

اقرأ أيضاً

Semiconductor heterostructures are backbones for solid state based optoelectronic devices. Recent advances in assembly techniques for van der Waals heterostructures has enabled the band engineering of semiconductor heterojunctions for atomically thin optoelectronic devices. In two-dimensional heterostructures with type II band alignment, interlayer excitons, where Coulomb-bound electrons and holes are confined to opposite layers, have shown promising properties for novel excitonic devices, including a large binding energy, micron-scale in-plane drift-diffusion, and long population and valley polarization lifetime. Here, we demonstrate interlayer exciton optoelectronics based on electrostatically defined lateral p-n junctions in a MoSe2-WSe2 heterobilayer. Applying a forward bias enables the first observation of electroluminescence from interlayer excitons. At zero bias, the p-n junction functions as a highly sensitive photodetector, where the wavelength-dependent photocurrent measurement allows the direct observation of resonant optical excitation of the interlayer exciton. The resulting photocurrent amplitude from the interlayer exciton is about 200 times smaller compared to the resonant excitation of intralayer exciton. This implies that the interlayer exciton oscillator strength is two orders of magnitude smaller than that of the intralayer exciton due to the spatial separation of electron and hole to opposite layers. These results lay the foundation for exploiting the interlayer exciton in future 2D heterostructure optoelectronic devices.
Coherent coupling between excitons is at the heart of many-body interactions with transition metal dichalcogenide (TMD) heterostructures as an emergent platform for the investigation of these interactions. We employ multi-dimensional coherent spectro scopy on monolayer MoSetextsubscript{2}/WSetextsubscript{2} heterostructures and observe coherent coupling between excitons spatially localized in monolayer MoSe$_2$ and WSe$_2$. Through many-body spectroscopy, we further observe the absorption state arising from free interlayer electron-hole pairs. This observation yields a spectroscopic measurement of the interlayer exciton binding energy of about 250 meV.
Exciton binding energies of hundreds of meV and strong light absorption in the optical frequency range make transition metal dichalcogenides (TMDs) promising for novel optoelectronic nanodevices. In particular, atomically thin TMDs can be stacked to heterostructures enabling the design of new materials with tailored properties. The strong Coulomb interaction gives rise to interlayer excitons, where electrons and holes are spatially separated in different layers. In this work, we reveal the microscopic processes behind the formation, thermalization and decay of these fundamentally interesting and technologically relevant interlayer excitonic states. In particular, we present for the exemplary MoSe$_2$-WSe$_2$ heterostructure the interlayer exciton binding energies and wave functions as well as their time- and energy-resolved dynamics. Finally, we predict the dominant contribution of interlayer excitons to the photoluminescence of these materials.
We study theoretically the Coulomb interaction between excitons in transition metal dichalcogenide (TMD) monolayers. We calculate direct and exchange interaction for both ground and excited states of excitons. The screening of the Coulomb interaction , specific to monolayer structures, leads to the unique behavior of the exciton-exciton scattering for excited states, characterized by the non-monotonic dependence of the interaction as function of the transferred momentum. We find that the nontrivial screening enables the description of TMD exciton interaction strength by approximate formula which includes exciton binding parameters. The influence of screening and dielectric environment on the exciton-exciton interaction was studied, showing qualitatively different behavior for ground state and excited states of excitons. Furthermore, we consider exciton-electron interaction, which for the excited states is governed by the dominant attractive contribution of the exchange component, which increases with the excitation number. The results provide a quantitative description of the exciton-exciton and exciton-electron scattering in transition metal dichalcogenides, and are of interest for the design of perspective nonlinear optical devices based on TMD monolayers.
Excitons in semiconductors, bound pairs of excited electrons and holes, can form the basis for new classes of quantum optoelectronic devices. A van der Waals heterostructure built from atomically thin semiconducting transition metal dichalcogenides ( TMDs) enables the formation of excitons from electrons and holes in distinct layers, producing interlayer excitons with large binding energy and a long lifetime. Employing heterostructures of monolayer TMDs, we realize optical and electrical generation of long-lived neutral and charged interlayer excitons. We demonstrate the transport of neutral interlayer excitons across the whole sample that can be controlled by excitation power and gate electrodes. We also realize the drift motion of charged interlayer excitons using Ohmic-contacted devices. The electrical generation and control of excitons provides a new route for realizing quantum manipulation of bosonic composite particles with complete electrical tunability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا