ﻻ يوجد ملخص باللغة العربية
This note is concerned with accurate and computationally efficient approximations of moments of Gaussian random variables passed through sigmoid or softmax mappings. These approximations are semi-analytical (i.e. they involve the numerical adjustment of parametric forms) and highly accurate (they yield 5% error at most). We also highlight a few niche applications of these approximations, which arise in the context of, e.g., drift-diffusion models of decision making or non-parametric data clustering approaches. We provide these as examples of efficient alternatives to more tedious derivations that would be needed if one was to approach the underlying mathematical issues in a more formal way. We hope that this technical note will be helpful to modellers facing similar mathematical issues, although maybe stemming from different academic prospects.
Multivariate analysis of fMRI data has benefited substantially from advances in machine learning. Most recently, a range of probabilistic latent variable models applied to fMRI data have been successful in a variety of tasks, including identifying si
We currently lack a solid statistical understanding of semi-supervised learning methods, instead treating them as a collection of highly effective tricks. This precludes the principled combination e.g. of Bayesian methods and semi-supervised learning
We present two Bayesian procedures to infer the interactions and external currents in an assembly of stochastic integrate-and-fire neurons from the recording of their spiking activity. The first procedure is based on the exact calculation of the most
Stochastic neural networks are a prototypical computational device able to build a probabilistic representation of an ensemble of external stimuli. Building on the relationship between inference and learning, we derive a synaptic plasticity rule that
We calculate a measure of statistical complexity from the global dynamics of electroencephalographic (EEG) signals from healthy subjects and epileptic patients, and are able to stablish a criterion to characterize the collective behavior in both grou