Excitations in the Yang-Gaudin Bose gas


الملخص بالإنكليزية

We study the excitation spectrum of two-component delta-function interacting bosons confined to a single spatial dimension, the Yang-Gaudin Bose gas. We show that there are pronounced finite-size effects in the dispersion relations of excitations, perhaps best illustrated by the spinon single particle dispersion which exhibits a gap at $2k_F$ and a finite-momentum roton minimum. Such features occur at energies far above the finite volume excitation gap, vanish slowly as $1/L$ for fixed spinon number, and can persist to the thermodynamic limit at fixed spinon density. Features such as the $2k_F$ gap also persist to multi-particle excitation continua. Our results show that excitations in the finite system can behave in a qualitatively different manner to analogous excitations in the thermodynamic limit. The Yang-Gaudin Bose gas is also host to multi-spinon bound states, known as $Lambda$-strings. We study these excitations both in the thermodynamic limit under the string hypothesis and in finite size systems where string deviations are taken into account. In the zero-temperature limit we present a simple relation between the length $n$ $Lambda$-string dressed energies $epsilon_n(lambda)$ and the dressed energy $epsilon(k)$. We solve the Yang-Yang-Takahashi equations numerically and compare to the analytical solution obtained under the strong couple expansion, revealing that the length $n$ $Lambda$-string dressed energy is Lorentzian over a wide range of real string centers $lambda$ in the vicinity of $lambda = 0$. We then examine the finite size effects present in the dispersion of the two-spinon bound states by numerically solving the Bethe ansatz equations with string deviations.

تحميل البحث