ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal entanglement witnesses in a split spin-squeezed Bose-Einstein condensate

126   0   0.0 ( 0 )
 نشر من قبل Nicolas Sangouard
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

How to detect quantum correlations in bi-partite scenarios using a split many-body system and collective measurements on each party? We address this question by deriving entanglement witnesses using either only first or first and second order moments of local collective spin components. In both cases, we derive optimal witnesses for spatially split spin squeezed states in the presence of local white noise. We then compare the two optimal witnesses with respect to their resistance to various noise sources operating either at the preparation or at the detection level. We finally evaluate the statistics required to estimate the value of these witnesses when measuring a split spin-squeezed Bose-Einstein condensate. Our results can be seen as a step towards Bell tests with many-body systems.



قيم البحث

اقرأ أيضاً

We propose and analyze a protocol for observing a violation of the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality using two spatially separated Bose-Einstein condensates (BECs). To prepare the Bell-correlated state, spin-changing collisions are us ed to first prepare a two-mode squeezed BEC. This is then split into two BECs by controlling the spatial wavefunction, $textit{e.g.}$ by modifying the trapping potential. Finally, spin-changing collisions are also exploited locally, to compensate local squeezing terms. The correlators appearing in the inequality are evaluated using three different approaches. In the first approach, correlators are estimated using normalized expectation values of number operators, in a similar way to evaluating continuous-variable Bell inequalities. An improvement to this approach is developed using the sign-binning of total spin measurements, which allows for the construction of two-outcome measurements and violations of the CHSH inequality without auxiliary assumptions. Finally, we show a third approach where maximal violations of the CH inequality can be obtained by assigning zero values to local vacua outcomes under a no-enhancement assumption. The effect of loss and imperfect detection efficiency is investigated and the observed violations are found to be robust to noise.
Entanglement is at the core of quantum information processing and may prove essential for quantum speed-up. Inspired by both theoretical and experimental studies of spin-momentum coupling in systems of ultra-cold atoms, we investigate the entanglemen t between the spin and momentum degrees of freedom of an optically trapped BEC of $^{87}$Rb atoms. We consider entanglement that arises due to the coupling of these degrees of freedom induced by Raman and radio-frequency fields and examine its dependence on the coupling parameters by evaluating von Neumann entropy as well as concurrence as measures of the entanglement attained. Our calculations reveal that under proper experimental conditions significant spin-momentum entanglement can be obtained, with von Neumann entropy of 80% of the maximum attainable value. Our analysis sheds some light on the prospects of using BECs for quantum information applications.
88 - F. X. Sun , W. Zhang , Q. Y. He 2017
Characterizing quantum phase transitions through quantum correlations has been deeply developed for a long time, while the connections between dynamical phase transitions (DPTs) and quantum entanglement is not yet well understood. In this work, we sh ow that the time-averaged two-mode entanglement in the spin space reaches a maximal value when it undergoes a DPT induced by external perturbation in a spin-orbit-coupled Bose-Einstein condensate. We employ the von Neumann entropy and a correlation-based entanglement criterion as entanglement measures and find that both of them can infer the existence of DPT. While the von Neumann entropy works only for a pure state at zero temperature and requires state tomography to reconstruct, the experimentally more feasible correlation-based entanglement criterion acts as an excellent proxy for entropic entanglement and can determine the existence of entanglement for a mixed state at finite temperature, making itself an excellent indicator for DPT. Our work provides a deeper understanding about the connection between DPTs and quantum entanglement, and may allow the detection of DPT via entanglement become accessible as the examined criterion is suitable for measuring entanglement.
We provide a class of optimal nondecomposable entanglement witnesses for 4N x 4N composite quantum systems or, equivalently, a new construction of nondecomposable positive maps in the algebra of 4N x 4N complex matrices. This construction provides na tural generalization of the Robertson map. It is shown that their structural physical approximations give rise to entanglement breaking channels.
The dispersive interaction of atoms and a far-detuned light field allows nondestructive imaging of the density oscillations in Bose-Einstein condensates. Starting from a ground state condensate, we investigate how the measurement back action leads to squeezing and entanglement of the quantized density oscillations. In particular, we show that properly timed, stroboscopic imaging and feedback can be used to selectively address specific eigenmodes and avoid excitation of non-targeted modes of the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا