ﻻ يوجد ملخص باللغة العربية
We report a polarized Raman scattering study of non-symmorphic topological insulator KHgSb with hourglass-like electronic dispersion. Supported by theoretical calculations, we show that the lattice of the previously assigned space group $P6_3/mmc$ (No. 194) is unstable in KHgSb. While we observe one of two calculated Raman active E$_{2g}$ phonons of space group $P6_3/mmc$ at room temperature, an additional A$_{1g}$ peak appears at 99.5 ~cm$^{-1}$ upon cooling below $T^*$ = 150 K, which suggests a lattice distortion. Several weak peaks associated with two-phonon excitations emerge with this lattice instability. We also show that the sample is very sensitive to high temperature and high laser power, conditions under which it quickly decomposes, leading to the formation of Sb. Our first-principles calculations indicate that space group $P6_3mc$ (No. 186), corresponding to a vertical displacement of the Sb atoms with respect to the Hg atoms that breaks the inversion symmetry, is lower in energy than the presumed $P6_3/mmc$ structure and preserves the glide plane symmetry necessary to the formation of hourglass fermions.
Topological insulators (TIs) host novel states of quantum matter, distinguished from trivial insulators by the presence of nontrivial conducting boundary states connecting the valence and conduction bulk bands. Up to date, all the TIs discovered expe
In this work, we identify a new class of Z2 topological insulator protected by non-symmorphic crystalline symmetry, dubbed a topological non-symmorphic crystalline insulator. We construct a concrete tight-binding model with the non-symmorphic space g
Superconductors with nontrivial band structure topology represent a class of materials with unconventional and potentially useful properties. Recent years have seen much success in creating artificial hybrid structures exhibiting main characteristics
We use high-resolution, tunable angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) calculations to study the electronic properties of single crystals of MnBi2Te4, a material that was predicted to be the first intrin
Several recent experiments on three-dimensional topological insulators claim to observe a large charge current-induced non-equilibrium ensemble spin polarization of electrons in the helical surface state. We present a comprehensive criticism of such