ﻻ يوجد ملخص باللغة العربية
We analyze large logarithmic corrections to 4D black hole entropy and relate them to the Weyl anomaly. We use duality to show that counter-terms in Einstein-Maxwell theory can be expressed in terms of geometry alone, with no dependence on matter terms. We analyze the two known $mathcal{N} = 2$ supersymmetric invariants for various non-supersymmetric black holes and find that both reduce to the Euler invariant. The $c$-anomaly therefore vanishes in these theories and the coefficient of the large logarithms becomes topological. It is therefore independent of continuous black hole parameters, such as the mass, even far from extremality.
We use the recipe of arXiv:1003.2974 to find half-BPS near-horizon geometries in the t$^3$ model of $N=2$, $D=4$ gauged supergravity, and explicitely construct some new examples. Among these are black holes with noncompact horizons, but also with sph
We study the thermodynamics of $AdS_4$ black hole solutions of Einstein-Maxwell theory that are accelerating, rotating, and carry electric and magnetic charges. We focus on the class for which the black hole horizon is a spindle and can be uplifted o
We present new analytic rotating AdS$_4$ black holes, found as solutions of 4d gauged $mathcal{N}=2$ supergravity coupled to abelian vector multiplets with a symmetric scalar manifold. These configurations preserve two real supercharges and have a sm
We study extremal and non-extremal generalizations of the regular non-abelian monopole solution of hep-th/9707176, interpreted in hep-th/0007018 as 5-branes wrapped on a shrinking S^2. Naively, the low energy dynamics is pure N=1 supersymmetric Yang-
The ratio of the shear viscosity to the entropy density is calculated for non-extremal Gauss-Bonnet (GB) black holes coupled to Born-Infeld (BI) electrodynamics in $5$ dimensions. The result is found to get corrections from the BI parameter and is an