ﻻ يوجد ملخص باللغة العربية
Objectivity constitutes one of the main features of the macroscopic classical world. An important aspect of the quantum-to-classical transition issue is to explain how such a property arises from the microscopic quantum world. Recently, within the framework of open quantum systems, there has been proposed such a mechanism in terms of the, so-called, Spectrum Broadcast Structures. These are multipartite quantum states of the system of interest and a part of its environment, assumed to be under an observation. This approach requires a departure from the standard open quantum systems methods, as the environment cannot be completely neglected. In the present work we study the emergence of such a state-structures in one of the canonical models of the condensed matter theory: Spin-boson model, describing the dynamics of a two-level system coupled to an environment made up by a large number of harmonic oscillators. We pay much attention to the behavior of the model in the non-Markovian regime, in order to provide a testbed to analyze how the non-Markovian nature of the evolution affects the surfacing of a spectrum broadcast structure.
One long-standing difficult problem in quantum dissipative dynamics is to solve the spin-boson model in a non-Markovian regime where a tractable systematic master equation does not exist. The spin-boson model is particularly important due to its cruc
We derive a time-convolutionless master equation for the spin-boson model in the weak coupling limit. The temporarily negative decay rates in the master equation indicate short time memory effects in the dynamics which is explicitly revealed when the
We develop a systematic and efficient approach for numerically solving the non-Markovian quantum state diffusion equations for open quantum systems coupled to an environment up to arbitrary orders of noises or coupling strengths. As an important appl
We present a theoretical framework to tackle quantum non-Markovian dynamics based on a microscopic collision model (CM), where the bath consists of a large collection of initially uncorrelated ancillas. Unlike standard memoryless CMs, we endow the ba
Non-Markovian quantum effects are typically observed in systems interacting with structured reservoirs. Discrete-time quantum walks are prime example of such systems in which, quantum memory arises due to the controlled interaction between the coin a