ترغب بنشر مسار تعليمي؟ اضغط هنا

Benefits of Cache Assignment on Degraded Broadcast Channels

59   0   0.0 ( 0 )
 نشر من قبل Michele Wigger
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Degraded K-user broadcast channels (BC) are studied when receivers are facilitated with cache memories. Lower and upper bounds are derived on the capacity-memory tradeoff, i.e., on the largest rate of reliable communication over the BC as a function of the receivers cache sizes, and the bounds are shown to match for some special cases. The lower bounds are achieved by two new coding schemes that benefit from non-uniform cache assignment. Lower and upper bounds are also established on the global capacity-memory tradeoff, i.e., on the largest capacity-memory tradeoff that can be attained by optimizing the receivers cache sizes subject to a total cache memory budget. The bounds coincide when the total cache memory budget is sufficiently small or sufficiently large, characterized in terms of the BC statistics. For small cache memories, it is optimal to assign all the cache memory to the weakest receiver. In this regime, the global capacity-memory tradeoff grows as the total cache memory budget divided by the number of files in the system. In other words, a perfect global caching gain is achievable in this regime and the performance corresponds to a system where all cache contents in the network are available to all receivers. For large cache memories, it is optimal to assign a positive cache memory to every receiver such that the weaker receivers are assigned larger cache memories compared to the stronger receivers. In this regime, the growth rate of the global capacity-memory tradeoff is further divided by the number of users, which corresponds to a local caching gain. Numerical indicate suggest that a uniform cache-assignment of the total cache memory is suboptimal in all regimes unless the BC is completely symmetric. For erasure BCs, this claim is proved analytically in the regime of small cache-sizes.



قيم البحث

اقرأ أيضاً

A new non-orthogonal multiple access scheme performing simultaneous transmission to multiple users characterized by different signal-to-noise ratios is proposed. Different users are multiplexed by storing their codewords into a multiplexing matrix ac cording to properly designed patterns and then mapping the columns of the matrix onto the symbols of a higher-order constellation. At the receiver, an interference cancellation algorithm is employed in order to achieve a higher spectral efficiency than orthogonal user multiplexing. Rate-Adaptive Constellation Expansion Multiple Access (RA-CEMA) is an alternative to conventional superposition coding as a solution for transmission on the degraded broadcast channel. It combines the benefits of an increased spectral efficiency with the advantages of reusing the coding and modulation schemes already used in contemporary communication systems, thereby facilitating its adoption in standards.
The relay broadcast channel (RBC) is considered, in which a transmitter communicates with two receivers with the assistance of a relay. Based on different degradation orders among the relay and the receivers outputs, three types of physically degrade d RBCs (PDRBCs) are introduced. Inner bounds and outer bounds are derived on the capacity region of the presented three types. The bounds are tight for two types of PDRBCs: 1) one receivers output is a degraded form of the other receivers output, and the relays output is a degraded form of the weaker receivers output; 2) one receivers output is a degraded form of the relays output, and the other receivers output is a degraded form of the relays output. For the Gaussian PDRBC, the bounds match, i.e., establish its capacity region.
The capacity regions are investigated for two relay broadcast channels (RBCs), where relay links are incorporated into standard two-user broadcast channels to support user cooperation. In the first channel, the Partially Cooperative Relay Broadcast C hannel, only one user in the system can act as a relay and transmit to the other user through a relay link. An achievable rate region is derived based on the relay using the decode-and-forward scheme. An outer bound on the capacity region is derived and is shown to be tighter than the cut-set bound. For the special case where the Partially Cooperative RBC is degraded, the achievable rate region is shown to be tight and provides the capacity region. Gaussian Partially Cooperative RBCs and Partially Cooperative RBCs with feedback are further studied. In the second channel model being studied in the paper, the Fully Cooperative Relay Broadcast Channel, both users can act as relay nodes and transmit to each other through relay links. This is a more general model than the Partially Cooperative RBC. All the results for Partially Cooperative RBCs are correspondingly generalized to the Fully Cooperative RBCs. It is further shown that the AWGN Fully Cooperative RBC has a larger achievable rate region than the AWGN Partially Cooperative RBC. The results illustrate that relaying and user cooperation are powerful techniques in improving the capacity of broadcast channels.
Polar codes are introduced for discrete memoryless broadcast channels. For $m$-user deterministic broadcast channels, polarization is applied to map uniformly random message bits from $m$ independent messages to one codeword while satisfying broadcas t constraints. The polarization-based codes achieve rates on the boundary of the private-message capacity region. For two-user noisy broadcast channels, polar implementations are presented for two information-theoretic schemes: i) Covers superposition codes; ii) Martons codes. Due to the structure of polarization, constraints on the auxiliary and channel-input distributions are identified to ensure proper alignment of polarization indices in the multi-user setting. The codes achieve rates on the capacity boundary of a few classes of broadcast channels (e.g., binary-input stochastically degraded). The complexity of encoding and decoding is $O(n*log n)$ where $n$ is the block length. In addition, polar code sequences obtain a stretched-exponential decay of $O(2^{-n^{beta}})$ of the average block error probability where $0 < beta < 0.5$.
In this work, we study coded placement in caching systems where the users have unequal cache sizes and demonstrate its performance advantage. In particular, we propose a caching scheme with coded placement for three-user systems that outperforms the best caching scheme with uncoded placement. In our proposed scheme, users cache both uncoded and coded pieces of the files, and the coded pieces at the users with large memories are decoded using the unicast/multicast signals intended to serve users with smaller memories. Furthermore, we extend the proposed scheme to larger systems and show the reduction in delivery load with coded placement compared to uncoded placement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا