The realistic modeling of STT-MRAM for the simulations of hybrid CMOS/Spintronics devices in comprehensive simulation environments require a full description of stochastic switching processes in state of the art STT-MRAM. Here, we derive an analytical formulation that takes into account the spin-torque asymmetry of the spin polarization function of magnetic tunnel junctions studying. We studied its validity range by comparing the analytical formulas with results achieved numerically within a full micromagnetic framework. We also find that a reasonable fit of the probability density function (PDF) of the switching time is given by a Pearson Type IV PDF. The main results of this work underlines the need of data-driven design of STT-MRAM that uses a full micromagnetic simulation framework for the statistical proprieties PDF of switching processes.