ﻻ يوجد ملخص باللغة العربية
Cloud computing has reached significant maturity from a systems perspective, but currently deployed solutions rely on rather basic economics mechanisms that yield suboptimal allocation of the costly hardware resources. In this paper we present Economic Resource Allocation (ERA), a complete framework for scheduling and pricing cloud resources, aimed at increasing the efficiency of cloud resources usage by allocating resources according to economic principles. The ERA architecture carefully abstracts the underlying cloud infrastructure, enabling the development of scheduling and pricing algorithms independently of the concrete lower-level cloud infrastructure and independently of its concerns. Specifically, ERA is designed as a flexible layer that can sit on top of any cloud system and interfaces with both the cloud resource manager and with the users who reserve resources to run their jobs. The jobs are scheduled based on prices that are dynamically calculated according to the predicted demand. Additionally, ERA provides a key internal API to pluggable algorithmic modules that include scheduling, pricing and demand prediction. We provide a proof-of-concept software and demonstrate the effectiveness of the architecture by testing ERA over both public and private cloud systems -- Azure Batch of Microsoft and Hadoop/YARN. A broader intent of our work is to foster collaborations between economics and system communities. To that end, we have developed a simulation platform via which economics and system experts can test their algorithmic implementations.
In the standard Mechanism Design framework, agents messages are gathered at a central point and allocation/tax functions are calculated in a centralized manner, i.e., as functions of all network agents messages. This requirement may cause communicati
Fog computing is a promising architecture to provide economic and low latency data services for future Internet of things (IoT)-based network systems. It relies on a set of low-power fog nodes that are close to the end users to offload the services o
We study online resource allocation in a cloud computing platform, through a posted pricing mechanism: The cloud provider publishes a unit price for each resource type, which may vary over time; upon arrival at the cloud system, a cloud user either t
This paper proposes a distributed dual gradient tracking algorithm (DDGT) to solve resource allocation problems over an unbalanced network, where each node in the network holds a private cost function and computes the optimal resource by interacting
We study a stochastic game framework with dynamic set of players, for modeling and analyzing their computational investment strategies in distributed computing. Players obtain a certain reward for solving the problem or for providing their computatio