ترغب بنشر مسار تعليمي؟ اضغط هنا

Entropy-power uncertainty relations : towards a tight inequality for all Gaussian pure states

209   0   0.0 ( 0 )
 نشر من قبل Anaelle Hertz
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that a proper expression of the uncertainty relation for a pair of canonically-conjugate continuous variables relies on entropy power, a standard notion in Shannon information theory for real-valued signals. The resulting entropy-power uncertainty relation is equivalent to the entropic formulation of the uncertainty relation due to Bialynicki-Birula and Mycielski, but can be further extended to rotated variables. Hence, based on a reasonable assumption, we give a partial proof of a tighter form of the entropy-power uncertainty relation taking correlations into account and provide extensive numerical evidence of its validity. Interestingly, it implies the generalized (rotation-invariant) Schrodinger-Robertson uncertainty relation exactly as the original entropy-power uncertainty relation implies Heisenberg relation. It is saturated for all Gaussian pure states, in contrast with hitherto known entropic formulations of the uncertainty principle.



قيم البحث

اقرأ أيضاً

Magic states were introduced in the context of Clifford circuits as a resource that elevates classically simulatable computations to quantum universal capability, while maintaining the same gate set. Here we study magic states in the context of match gate (MG) circuits, where the notion becomes more subtle, as MGs are subject to locality constraints and also the SWAP gate is not available. Nevertheless a similar picture of gate-gadget constructions applies, and we show that every pure fermionic state which is non-Gaussian, i.e. which cannot be generated by MGs from a computational basis state, is a magic state for MG computations. This result has significance for prospective quantum computing implementation in view of the fact that MG circuit evolutions coincide with the quantum physical evolution of non-interacting fermions.
We suggest an improved version of Robertson-Schrodinger uncertainty relation for canonically conjugate variables by taking into account a pair of characteristics of states: non-Gaussianity and mixedness quantified by using fidelity and entropy, respe ctively. This relation is saturated by both Gaussian and Fock states, and provides strictly improved bound for any non-Gaussian states or mixed states. For the case of Gaussian states, it is reduced to the entropy-bounded uncertainty relation derived by Dodonov. Furthermore, we consider readily computable measures of both characteristics, and find weaker but more readily accessible bound. With its generalization to the case of two-mode states, we show applicability of the relation to detect entanglement of non-Gaussian states.
We provide a unified graphical calculus for all Gaussian pure states, including graph transformation rules for all local and semi-local Gaussian unitary operations, as well as local quadrature measurements. We then use this graphical calculus to anal yze continuous-variable (CV) cluster states, the essential resource for one-way quantum computing with CV systems. Current graphical approaches to CV cluster states are only valid in the unphysical limit of infinite squeezing, and the associated graph transformation rules only apply when the initial and final states are of this form. Our formalism applies to all Gaussian pure states and subsumes these rules in a natural way. In addition, the term CV graph state currently has several inequivalent definitions in use. Using this formalism we provide a single unifying definition that encompasses all of them. We provide many examples of how the formalism may be used in the context of CV cluster states: defining the closest CV cluster state to a given Gaussian pure state and quantifying the error in the approximation due to finite squeezing; analyzing the optimality of certain methods of generating CV cluster states; drawing connections between this new graphical formalism and bosonic Hamiltonians with Gaussian ground states, including those useful for CV one-way quantum computing; and deriving a graphical measure of bipartite entanglement for certain classes of CV cluster states. We mention other possible applications of this formalism and conclude with a brief note on fault tolerance in CV one-way quantum computing.
The Wehrl entropy is an entropy associated to the Husimi quasi-probability distribution. We discuss how it can be used to formulate entropic uncertainty relations and for a quantification of entanglement in continuous variables. We show that the Wehr l-Lieb inequality is closer to equality than the usual Bia{l}ynicki-Birula and Mycielski entropic uncertainty relation almost everywhere. Furthermore, we show how a Wehrl mutual information can be used to obtain a measurable perfect witness for pure state bipartite entanglement, which additionally provides a lower bound on the entanglement entropy.
Heisenbergs uncertainty principle has recently led to general measurement uncertainty relations for quantum systems: incompatible observables can be measured jointly or in sequence only with some unavoidable approximation, which can be quantified in various ways. The relative entropy is the natural theoretical quantifier of the information loss when a `true probability distribution is replaced by an approximating one. In this paper, we provide a lower bound for the amount of information that is lost by replacing the distributions of the sharp position and momentum observables, as they could be obtained with two separate experiments, by the marginals of any smeared joint measurement. The bound is obtained by introducing an entropic error function, and optimizing it over a suitable class of covariant approximate joint measurements. We fully exploit two cases of target observables: (1) $n$-dimensional position and momentum vectors; (2) two components of position and momentum along different directions. In (1), we connect the quantum bound to the dimension $n$; in (2), going from parallel to orthogonal directions, we show the transition from highly incompatible observables to compatible ones. For simplicity, we develop the theory only for Gaussian states and measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا