ﻻ يوجد ملخص باللغة العربية
We present two structural results concerning longest common prefixes of non-empty languages. First, we show that the longest common prefix of the language generated by a context-free grammar of size $N$ equals the longest common prefix of the same grammar where the heights of the derivation trees are bounded by $4N$. Second, we show that each nonempty language $L$ has a representative subset of at most three elements which behaves like $L$ w.r.t. the longest common prefix as well as w.r.t. longest common prefixes of $L$ after unions or concatenations with arbitrary other languages. From that, we conclude that the longest common prefix, and thus the longest common suffix, of a context-free language can be computed in polynomial time.
For a partial word $w$ the longest common compatible prefix of two positions $i,j$, denoted $lccp(i,j)$, is the largest $k$ such that $w[i,i+k-1]uparrow w[j,j+k-1]$, where $uparrow$ is the compatibility relation of partial words (it is not an equival
We consider the cyclic closure of a language, and its generalisation to the operators $C^k$ introduced by Brandstadt. We prove that the cyclic closure of an indexed language is indexed, and that if $L$ is a context-free language then $C^k(L)$ is indexed.
We consider the classic problem of computing the Longest Common Subsequence (LCS) of two strings of length $n$. While a simple quadratic algorithm has been known for the problem for more than 40 years, no faster algorithm has been found despite an ex
Recently Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li and Frank Stephan proposed a quasi-polynomial time algorithm for parity games. This paper proposes a short proof of correctness of their algorithm.
We revisit the longest common extension (LCE) problem, that is, preprocess a string $T$ into a compact data structure that supports fast LCE queries. An LCE query takes a pair $(i,j)$ of indices in $T$ and returns the length of the longest common pre