ترغب بنشر مسار تعليمي؟ اضغط هنا

Very High Excitation Lines of H$_{2}$ in the Orion Molecular Cloud Outflow

72   0   0.0 ( 0 )
 نشر من قبل Thomas R. Geballe
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Vibration-rotation lines of H$_{2}$ from highly excited levels approaching the dissociation limit have been detected at a number of locations in the shocked gas of the Orion Molecular Cloud (OMC-1), including in a Herbig-Haro object near the tip of one of the OMC-1 fingers. Population diagrams show that while the excited H$_{2}$ is almost entirely at a kinetic temperature of $sim$1,800 K, (typical for vibrationally shock-excited H$_{2}$), as in the previously reported case of Herbig-Haro object HH 7 up to a few percent of the H$_{2}$ is at a kinetic temperature of $sim$5,000~K. The location with the largest fraction of hot H$_{2}$ is the Herbig-Haro object, where the outflowing material is moving at a higher speed than at the other locations. Although theoretical work is required for a better understanding of the 5,000 K H$_{2}$, (including how it cools), its existence and the apparent dependence of its abundance relative to that of the cooler component on the relative velocities of the outflow and the surrounding ambient gas appear broadly consistent with it having recently reformed. The existence of this high temperature H$_{2}$ appears to be a common characteristic of shock-excited molecular gas.



قيم البحث

اقرأ أيضاً

We present high-resolution images of the submillimeter SiO line emissions of a massive young stellar object Orion Source I using the Atacama Large Millimeter/ Submillimeter Array (ALMA) at band 8. We detected the 464 GHz SiO v=4 J=11-10 line in Sourc e I, which is the first detection of the SiO v=4 line in star-forming regions, together with the 465 GHz 29SiO v=2 J=11-10 and the 428 GHz SiO v=2 J=10-9 lines with a resolution of 50 AU. The 29SiO v=2 J=11-10 and SiO v=4 J=11-10 lines have compact structures with the diameter of <80 AU. The spatial and velocity distribution suggest that the line emissions are associated with the base of the outflow and the surface of the edge-on disk. In contrast, SiO v=2 J=10-9 emission shows a bipolar structure in the direction of northeast-southwest low-velocity outflow with ~200 AU scale. The emission line exhibits a velocity gradient along the direction of the disk elongation. With the assumption of the ring structure with Keplerian rotation, we estimated the lower limit of the central mass to be 7 solar mass and the radius of 12 AU< r <26 AU.
We measure H$_2$ temperatures and column densities across the Orion BN/KL explosive outflow from a set of thirteen near-IR H$_2$ rovibrational emission lines observed with the TripleSpec spectrograph on Apache Point Observatorys 3.5-meter telescope. We find that most of the region is well-characterized by a single temperature (~2000-2500 K), which may be influenced by the limited range of upper energy levels (6000-20,000 K) probed by our data set. The H$_2$ column density maps indicate that warm H$_2$ comprises 10$^{-5}$ - 10$^{-3}$ of the total H$_2$ column density near the center of the outflow. Combining column density measurements for co-spatial H$_2$ and CO at T = 2500 K, we measure a CO/H$_2$ fractional abundance of 2$times$10$^{-3}$, and discuss possible reasons why this value is in excess of the canonical 10$^{-4}$ value, including dust attenuation, incorrect assumptions on co-spatiality of the H$_2$ and CO emission, and chemical processing in an extreme environment. We model the radiative transfer of H$_2$ in this region with UV pumping models to look for signatures of H$_2$ fluorescence from H I Ly$alpha$ pumping. Dissociative (J-type) shocks and nebular emission from the foreground Orion H II region are considered as possible Ly$alpha$ sources. From our radiative transfer models, we predict that signatures of Ly$alpha$ pumping should be detectable in near-IR line ratios given a sufficiently strong source, but such a source is not present in the BN/KL outflow. The data are consistent with shocks as the H$_2$ heating source.
The abundances of chemical elements and their depletion factors are essential parameters for understanding the composition of the gas and dust that are ultimately incorporated into stars and planets. Sulfur is an abundant but peculiar element in the sense that, despite being less volatile than other elements (e.g., carbon), it is not a major constituent of dust grains in diffuse interstellar clouds. Here, we determine the gas-phase carbon-to-sulfur abundance ratio, [C]/[S], and the sulfur abundance [S] in a dense star-forming cloud from new radio recombination lines (RRLs) detected with the Yebes 40m telescope - at relatively high frequencies (~40 GHz ~7 mm) and angular resolutions (down to 36) - in the Orion Bar, a rim of the Orion Molecular Cloud (OMC). We detect nine Cnalpha RRLs (with n=51 to 59) as well as nine narrow line features separated from the Cnalpha lines by delta v=-8.4+/-0.3 km s^-1. Based on this velocity separation, we assign these features to sulfur RRLs, with little contribution of RRLs from the more condensable elements Mg, Si, or Fe. Sulfur RRLs lines trace the photodissociation region (PDR) of the OMC. In these predominantly neutral gas layers, up to A_V~4, the ions C+ and S+ lock in most of the C and S gas-phase reservoir. We determine a relative abundance of [C]_Ori/[S]_Ori=10.4+/-0.6 and, adopting the same [C]_Ori measured in the translucent gas toward star theta^1 Ori B, an absolute abundance of [S]_Ori=(1.4+/-0.4)x10^-5. This value is consistent with emission models of the observed sulfur RRLs if N(S+)~7x10^17 cm^-2 (beam-averaged). The [S]_Ori is the initial sulfur abundance in the OMC, before an undetermined fraction of the [S]_Ori goes into molecules and ice mantles in the cloud interior. The inferred abundance [S]_Ori matches the solar abundance, thus implying that there is little depletion of sulfur onto rocky dust grains, with D(S)=0.0+/-0.2 dex.
We have mapped six molecular cloud cores in the Orion A giant molecular cloud (GMC), whose kinetic temperatures range from 10 to 30 K, in CCS and N2H+ with Nobeyama 45 m radio telescope to study their chemical characteristics. We identified 31 intens ity peaks in the CCS and N2H+ emission in these molecular cloud cores. It is found for cores with temperatures lower than ~ 25 K that the column density ratio of N(N2H+)/N(CCS) is low toward starless core regions while it is high toward star-forming core regions, in case that we detected both of the CCS and N2H+ emission. This is very similar to the tendency found in dark clouds (kinetic temperature ~ 10 K). The criterion found in the Orion A GMC is N(N2H+)/N(CCS) ~ 2-3. In some cases, the CCS emission is detected toward protostars as well as the N2H+ emission. Secondary late-stage CCS peak in the chemical evolution caused by CO depletion may be a possible explanation for this. We found that the chemical variation of CCS and N2H+ can also be used as a tracer of evolution in warm (10-25 K) GMC cores. On the other hand, some protostars do not accompany N2H+ intensity peaks but are associated with dust continuum emitting regions, suggesting that the N2H+ abundance might be decreased due to CO evaporation in warmer star-forming sites.
We report the first evidence of molecular gas in two atomic hydrogen (HI) clouds associated with gas outflowing from the Small Magellanic Cloud (SMC). We used the Atacama Pathfinder Experiment (APEX) to detect and spatially resolve individual clumps of CO(2-1) emission in both clouds. CO clumps are compact (~ 10 pc) and dynamically cold (linewidths < 1 km/s). Most CO emission appears to be offset from the peaks of the HI emission, some molecular gas lies in regions without a clear HI counterpart. We estimate a total molecular gas mass of 10^3-10^4 Msun in each cloud and molecular gas fractions up to 30% of the total cold gas mass (molecular + neutral). Under the assumption that this gas is escaping the galaxy, we calculated a cold gas outflow rate of 0.3-1.8 Msun/yr and mass loading factors of 3 -12 at a distance larger than 1 kpc. These results show that relatively weak star-formation-driven winds in dwarf galaxies like the SMC are able to accelerate significant amounts of cold and dense matter and inject it into the surrounding environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا