ترغب بنشر مسار تعليمي؟ اضغط هنا

The Variability and Period Analysis for the BL Lac AO 0235+164

87   0   0.0 ( 0 )
 نشر من قبل Chao Lin
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Variability is one of the extreme observational properties of BL Lacertae objects. AO 0235+164 is a well studied BL Lac through the whole electro-magnetic wavebands. In the present work, we show its optical R band photometric observations carried out during the period of Nov, 2006 to Dec. 2012 using the Ap6E CCD camera attached to the primary focus of the $rm 70-cm$ meniscus telescope at Abastumani Observatory, Georgia. It shows a large variation of $Delta R$ = 4.88 mag (14.19 - 19.07 mag) and a short time scale of $Delta T_v$ = 73.5 min during our monitoring period. During the period of Dec. 2006 to Nov. 2009, we made radio observations of the source using the 25-m radio telescope at Xinjiang Astronomical Observatory. When a discrete correlation function (DCF) is adopted to the optical and radio observations, we found that the optical variation leads the radio variation by 23.2$pm$12.9 days.



قيم البحث

اقرأ أيضاً

66 - S. Frey 2005
In 1999, the highly compact and variable BL Lac object AO 0235+164 was identified as the highest brightness temperature active galactic nucleus observed with the VLBI Space Observatory Programme (VSOP), with T_B > 5.8 x 10^{13} K. The sub-milliarcsec ond radio structure of this source has been studied with dual-frequency (1.6 and 5 GHz), polarization-sensitive VSOP observations during 2001 and 2002. Here we present the results of this monitoring campaign. At the time of these observations, the source was weakly polarized and characterized by a radio core that is clearly resolved on space-ground baselines.
We locate the gamma-ray and lower frequency emission in flares of the BL Lac object AO 0235+164 at >12pc in the jet of the source from the central engine. We employ time-dependent multi-spectral-range flux and linear polarization monitoring observati ons, as well as ultra-high resolution (~0.15 milliarcsecond) imaging of the jet structure at lambda=7mm. The time coincidence in the end of 2008 of the propagation of the brightest superluminal feature detected in AO 0235+164 (Qs) with an extreme multi-spectral-range (gamma-ray to radio) outburst, and an extremely high optical and 7mm (for Qs) polarization degree provides strong evidence supporting that all these events are related. This is confirmed at high significance by probability arguments and Monte-Carlo simulations. These simulations show the unambiguous correlation of the gamma-ray flaring state in the end of 2008 with those in the optical, millimeter, and radio regime, as well as the connection of a prominent X-ray flare in October 2008, and of a series of optical linear polarization peaks, with the set of events in the end of 2008. The observations are interpreted as the propagation of an extended moving perturbation through a re-collimation structure at the end of the jets acceleration and collimation zone.
We report on multi-band photometric and polarimetric observations of the blazars AO 0235+164 and PKS 1510-089. These two blazars were active in 2008 and 2009, respectively. In these active states, prominent short flares were observed in both objects, having amplitudes of >1 mag within 10 d. The $V-J$ color became bluer when the objects were brighter in these flares. On the other hand, the color of PKS 1510-089 exhibited a trend that it became redder when it was brighter, except for its prominent flare. This redder-when-brighter trend can be explained by the strong contribution of thermal emission from an accretion disk. The polarization degree increased at the flares, and reached >25 % at the maxima. We compare these flares in AO 0235+164 and PKS 1510-089 with other short flares which were detected by our monitoring of 41 blazars. Those two flares had one of the largest variation amplitudes in both flux and polarization degree. Furthermore, we found a significant positive correlation between the amplitudes of the flux and polarization degree in the short flares. It indicates that the short flares originate from the region where the magnetic field is aligned.
New optical and radio data on the BL Lacertae object AO 0235+16 have been collected in the last four years by a wide international collaboration, which confirm the intense activity of this source. The optical data also include the results of the Whol e Earth Blazar Telescope (WEBT) first-light campaign organized in November 1997. The optical spectrum is observed to basically steepen when the source gets fainter. We have investigated the existence of typical variability time scales and of possible correlations between the optical and radio emissions by means of visual inspection, Discrete Correlation Function analysis, and Discrete Fourier Transform technique. The major radio outbursts are found to repeat quasi-regularly with a periodicity of about 5.7 years; this period is also in agreement with the occurrence of some of the major optical outbursts, but not all of them.
The blazar AO 0235+164 (z = 0.94) has been one of the most active objects observed by Fermi Large Area Telescope (LAT) since its launch in Summer 2008. In addition to the continuous coverage by Fermi, contemporaneous observations were carried out fro m the radio to {gamma} -ray bands between 2008 September and 2009 February. In this paper, we summarize the rich multi-wavelength data collected during the campaign (including F-GAMMA, GASP- WEBT, Kanata, OVRO, RXTE, SMARTS, Swift, and other instruments), examine the cross-correlation between the light curves measured in the different energy bands, and interpret the resulting spectral energy distributions in the context of well-known blazar emission models. We find that the {gamma} -ray activity is well correlated with a series of near-IR/optical flares, accompanied by an increase in the optical polarization degree. On the other hand, the X-ray light curve shows a distinct 20 day high state of unusually soft spectrum, which does not match the extrapolation of the optical/UV synchrotron spectrum. We tentatively interpret this feature as the bulk Compton emission by cold electrons contained in the jet, which requires an accretion disk corona with an effective covering factor of 19% at a distance of 100 Rg . We model the broadband spectra with a leptonic model with external radiation dominated by the infrared emission from the dusty torus.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا