ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-Wave Modes in Transition from a Thin Film to a Full Magnonic Crystal

399   0   0.0 ( 0 )
 نشر من قبل Manuel Langer
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin-wave modes are studied under the gradual transition from a flat thin film to a full (one-dimensional) magnonic crystal. For this purpose, the surface of a pre-patterned 36.8 nm thin permalloy film was sequentially ion milled resulting in magnonic hybrid structures, referred to as surface-modulated magnonic crystals, with increasing modulation depth. After each etching step, ferromagnetic resonance measurements were performed yielding the spin-wave resonance modes in backward-volume and Damon-Eshbach geometry. The spin-wave spectra of these hybrid systems reveal an even larger variety of spin-wave states compared to the full magnonic crystal. The measurements are corroborated by quasi-analytical theory and micromagnetic simulations in order to study the changing spin-wave mode character employing spin-wave mode profiles. In backward-volume geometry, a gradual transition from the uniform mode in the film limit to a fundamental mode in the thin part of the magnonic crystal was observed. Equivalently, the first and the second film modes are transform into a center and an edge mode of the thick part of the magnonic crystal. Simple transition rules from the $n^{mathrm{th}}$ film mode to the $m^{mathrm{th}}$ mode in the full magnonic crystal are formulated unraveling the complex mode structure particularly in the backward-volume geometry. An analogous analysis was performed in the Damon-Eshbach geometry.



قيم البحث

اقرأ أيضاً

In this work, we study experimentally by broadband ferromagnetic resonance measurements, the dependence of the spin-wave excitation spectra on the magnetic applied field in CoFeB meander-shaped films. Two different orientations of the external magnet ic field were explored, namely parallel or perpendicular to the lattice cores. The interpretation of the field dependence of the frequency and spatial profiles of major spin-wave modes were obtained by micromagnetic simulations. We show that the vertical segments lead to the easy-axis type of magnetic anisotropy and support the in-phase and out-of-phase spin-wave precession amplitude in the vertical segments. The latter could potentially be used for the design of tunable metasurfaces or in magnetic memories based on meandering 3D magnetic films.
Transmission of microwave spin waves through a microstructured magnonic crystal in the form of a permalloy waveguide of a periodically varying width was studied experimentally and theoretically. The spin wave characteristics were measured by spatiall y-resolved Brillouin light scattering microscopy. A rejection frequency band was clearly observed. The band gap frequency was controlled by the applied magnetic field. The measured spin-wave intensity as a function of frequency and propagation distance is in good agreement with a model calculation.
The Talbot effect has been known in optics since XIX century and found various technological applications. In this paper, we demonstrate with the help of micromagnetic simulations this self-imaging phenomenon for spin waves propagating in a thin ferr omagnetic film magnetized out-of-plane. We show that the main features of the obtained Talbot carpets for spin waves can be described, to a large extent, by the approximate analytical formulas yielded by the general analysis of the wave phenomena. Our results indicate a route to a feasible experimental realisation of the Talbot effect at low and high frequencies and offer interesting effects and possible applications in magnonics.
170 - Andrey A. Nikitin 2015
An electric current controlled spin-wave logic gate based on a width-modulated dynamic magnonic crystal is realized. The device utilizes a spin-wave waveguide fabricated from a single-crystal Yttrium Iron Garnet film and two conducting wires attached to the film surface. Application of electric currents to the wires provides a means for dynamic control of the effective geometry of the waveguide and results in a suppression of the magnonic band gap. The performance of the magnonic crystal as an AND logic gate is demonstrated.
Interactions are responsible for intriguing physics, e.g. emergence of exotic ground states and excitations, in a wide range of systems. Here we theoretically demonstrate that dipole-dipole interaction leads to bosonic eigen-excitations with average spin ranging from zero to above $hbar$ in magnets with uniformly magnetized ground states. These exotic excitations can be interpreted as quantum coherent conglomerates of spin $hbar$ magnons, the eigen-excitations when the dipolar interactions are disregarded. We further find that the eigenmodes in an easy-axis antiferromagnet are spin-zero quasiparticles instead of the widely believed spin $pm hbar$ magnons. The latter re-emerge when the symmetry is broken by a sufficiently large applied magnetic field. The average spin greater than $hbar$ is accompanied by vacuum fluctuations and may be considered to be a weak form of frustration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا