ﻻ يوجد ملخص باللغة العربية
Over the past decade, online social networks (OSNs) such as Twitter and Facebook have thrived and experienced rapid growth to over 1 billion users. A major evolution would be to leverage the characteristics of OSNs to evaluate the effectiveness of the many routing schemes developed by the research community in real-world scenarios. In this demo, we showcase AlleyOop Social, a secure delay tolerant networking research platform that serves as a real-life mobile social networking application for iOS devices. AlleyOop Social allows users to interact, publish messages, and discover others that share common interests in an intermittent network using Bluetooth, peer-to-peer WiFi, and infrastructure WiFi. The research platform serves as an overlay application for the Secure Opportunistic Schemes (SOS) middleware which allows different routing schemes to be easily implemented relieving the burden of security and connection establishment.
Over the past decade, online social networks (OSNs) such as Twitter and Facebook have thrived and experienced rapid growth to over 1 billion users. A major evolution would be to leverage the characteristics of OSNs to evaluate the effectiveness of th
Routing plays a fundamental role in network applications, but it is especially challenging in Delay Tolerant Networks (DTNs). These are a kind of mobile ad hoc networks made of e.g. (possibly, unmanned) vehicles and humans where, despite a lack of co
In Delay Tolerant Networks (DTNs), two-hop routing compromises energy versus delay more conveniently than epidemic routing. Literature provides comprehensive results on optimal routing policies for mobile nodes with homogeneous mobility, often neglec
Delay tolerant Ad-hoc Networks make use of mobility of relay nodes to compensate for lack of permanent connectivity and thus enable communication between nodes that are out of range of each other. To decrease delivery delay, the information that need
Narrowband Internet of Things (NB-IoT) is a recent addition to the 3GPP standards offering low power wide area networking (LP-WAN) for a massive amount of IoT devices communicating at low data rates in the licensed bands. As the number of deployed NB