ﻻ يوجد ملخص باللغة العربية
Global magnetic fields of flare stars can evolve rapidly, in time scale of hundreds or dozens of days. We believe, that such changes result from rapid superposition of local magnetic fields generated by differential rotation of those stars. We discuss possible mechanisms of generation and dissipation of local and global magnetic fields in sample flare stars OT Ser and YZ CMi. We propose mechanism of magnetic braking of these stars, in which differential rotation generates local magnetic fields, and eventually energy accumulated in local fields is radiated away by flares. We obtained estimates of the rotational energy and the energy of the global magnetic field of OT Ser and YZ CMi. We also show that the energy of the local magnetic fields dissipated during superflare of YZ CMi on 9 February 2008 (UT 20:22:00) did not influence the global magnetic field of this star.
The white light during M dwarf flares has long been known to exhibit the broadband shape of a T~10,000 K blackbody, and the white light in solar flares is thought to arise primarily from Hydrogen recombination. Yet, a current lack of broad wavelength
We analyze the light curve of 1740 flare stars to study the relationship between the magnetic feature characteristics and the identified flare activity. Coverage and stability of magnetic features are inspired by rotational modulation of light curve
Magnetic flux ropes (MFRs) are thought to be the central structure of solar eruptions, and their ideal MHD instabilities can trigger the eruption. Here we performed a study of all the MFR configurations that lead to major solar flares, either eruptiv
Are the kG-strength magnetic fields observed in young stars a fossil field left over from their formation or are they generated by a dynamo? We use radiation non-ideal magnetohydrodynamics simulations of the gravitational collapse of a rotating, magn
Based on one-month long MMT time-series observations of the open cluster M37, we monitored light variations of nearly 2500 red dwarfs and successfully identified 420 flare events from 312 cluster M dwarf stars. For each flare light curve, we derived