ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetohydrodynamic shocks in a dissipative quantum plasma with exchange-correlation effects

56   0   0.0 ( 0 )
 نشر من قبل Amar Prasad Misra
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the nonlinear propagation of multidimensional magnetosonic shock waves (MSWs) in a dissipative quantum magnetoplasma. A macroscopic quantum magnetohydrodynamic (QMHD) model is used to include the quantum force associated with the Bohm potential, the pressure-like spin force, the exchange and correlation force of electrons, as well as the dissipative force due to the kinematic viscosity of ions and the magnetic diffusivity. The effects of these forces on the properties of arbitrary amplitude MSWs are examined numerically. It is found that the contribution from the exchange-correlation force appears to be dominant over those from the pressure gradient and the other similar quantum forces, and it results into a transition from monotonic to oscillatory shocks in presence of either the ion kinematic viscosity or the magnetic diffusivity.



قيم البحث

اقرأ أيضاً

We report the first measurements of equations of state of a fully relaxed magnetohydrodynamic (MHD) laboratory plasma. Parcels of magnetized plasma, called Taylor states, are formed in a coaxial magnetized plasma gun, and are allowed to relax and dri ft into a closed flux conserving volume. Density, ion temperature, and magnetic field are measured as a function of time as the Taylor states compress and heat. The theoretically predicted MHD and double adiabatic equations of state are compared to experimental measurements. We find that the MHD equation of state is inconsistent with our data.
We have explored the thermodynamics of compressed magnetized plasmas in laboratory experiments and we call these studies magnetothermodynamics. The experiments are carried out in the Swarthmore Spheromak eXperiment device. In this device, a magnetize d plasma source is located at one end and at the other end, a closed conducting can is installed. We generate parcels of magnetized plasma and observe their compression against the end wall of the conducting cylinder. The plasma parameters such as plasma density, temperature, and magnetic field are measured during compression using HeNe laser interferometry, ion Doppler spectroscopy and a linear $dot{B}$ probe array, respectively. To identify the instances of ion heating during compression, a PV diagram is constructed using measured density, temperature, and a proxy for the volume of the magnetized plasma. Different equations of state are analyzed to evaluate the adiabatic nature of the compressed plasma. A 3D resistive magnetohydrodynamic code (NIMROD) is employed to simulate the twisted Taylor states and show stagnation against the end wall of the closed conducting can. The simulation results are consistent to what we observe in our experiments.
119 - P. Guio Physics , Astronomy 2010
The existence of low frequency waveguide modes of ion acoustic waves is demonstrated in magnetized plasmas for electron temperature striated along the magnetic field lines. At higher frequencies, in a band between the ion cyclotron and the ion plasma frequency, radiative modes develop and propagate obliquely to the field away from the striation. Arguments for the subsequent formation and propagation of electrostatic shock are presented and demonstrated numerically. For such plasma conditions, the dissipation mechanism is the leakage of the harmonics generated by the wave steepening.
97 - V.Titov , R.Stepanov , N.Yokoi 2019
We perform direct numerical simulations of magnetohydrodynamic (MHD) turbulence with kinetic energy and cross helicity injections at large scales. We observe that the cross helicity changes sign as we go from large and intermediate scales to small sc ales. In addition, the magnetic reconnections are strongest at the regions where the cross helicity changes sign and becomes smallest in magnitude. Thus, our simulations provide an important window to explore the regions of magnetic reconnections in nonlinear MHD.
Using direct numerical simulations of three-dimensional magnetohydrodynamic (MHD) turbulence the spatio-temporal behavior of magnetic field fluctuations is analyzed. Cases with relatively small, medium and large values of a mean background magnetic f ield are considered. The (wavenumber) scale dependent time correlation function is directly computed for different simulations, varying the mean magnetic field value. From this correlation function the time decorrelation is computed and compared with different theoretical times, namely, the local non-linear time, the random sweeping time, and the Alfvenic time, the latter being a wave effect. It is observed that time decorrelations are dominated by sweeping effects, and only at large values of the mean magnetic field and for wave vectors mainly aligned with this field time decorrelations are controlled by Alfvenic effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا