ﻻ يوجد ملخص باللغة العربية
It is well known that two-dimensional mappings preserving a rational elliptic fibration, like the Quispel-Roberts-Thompson mappings, can be deautonomized to discrete Painleve equations. However, the dependence of this procedure on the choice of a particular elliptic fiber has not been sufficiently investigated. In this paper we establish a way of performing the deautonomization for a pair of an autonomous mapping and a fiber. %By choosing a particular Starting from a single autonomous mapping but varying the type of a chosen fiber, we obtain different types of discrete Painleve equations using this deautonomization procedure. We also introduce a technique for reconstructing a mapping from the knowledge of its induced action on the Picard group and some additional geometric data. This technique allows us to obtain factorized expressions of discrete Painleve equations, including the elliptic case. Further, by imposing certain restrictions on such non-autonomous mappings we obtain new and simple elliptic difference Painleve equations, including examples whose symmetry groups do not appear explicitly in Sakais classification.
A geometric study of two 4-dimensional mappings is given. By the resolution of indeterminacy they are lifted to pseudo-automorphisms of rational varieties obtained from $({mathbb P}^1)^4$ by blowing-up along sixteen 2-dimensional subvarieties. The sy
We express discrete Painleve equations as discrete Hamiltonian systems. The discrete Hamiltonian systems here mean the canonical transformations defined by generating functions. Our construction relies on the classification of the discrete Painleve e
In this paper we study a certain recurrence relation, that can be used to generate ladder operators for the Laguerre Unitary ensemble, from the point of view of Sakais geometric theory of Painleve equations. On one hand, this gives us one more detail
Over the last decade it has become clear that discrete Painleve equations appear in a wide range of important mathematical and physical problems. Thus, the question of recognizing a given non-autonomous recurrence as a discrete Painleve equation and
The classical Painleve equations are so well known that it may come as a surprise to learn that the asymptotic description of its solutions remains incomplete. The problem lies mainly with the description of families of solutions in the complex domai