ترغب بنشر مسار تعليمي؟ اضغط هنا

Spaser quenching by off-resonant plasmon modes

64   0   0.0 ( 0 )
 نشر من قبل Tigran V. Shahbazyan
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the effect of off-resonant plasmon modes on spaser threshold in nanoparticle-based spasers. We develop an analytical semiclassical model and derive spaser threshold condition accounting for gain coupling to higher-order plasmons. We show that such a coupling originates from inhomogeneity of gain distribution near the metal surface and leads to an upward shift of spaser frequency and population inversion threshold. This effect is similar, albeit significantly weaker, to quenching of plasmon-enhanced fluorescence near metal nanostructures due to excitation of off-resonant modes with wide spectral band. We also show that spaser quenching is suppressed for high gain concentrations and establish a simple criterion for quenching onset, which we support by numerical calculations for spherical geometry.



قيم البحث

اقرأ أيضاً

We theoretically introduce a topological spaser, which consists of a hexagonal array of plasmonic metal nanoshells containing an achiral gain medium in their cores. Such a spaser can generate two mutually time-reversed chiral surface plasmon modes in the $mathbf K$- and $mathbf K^prime$-valleys, which carry the opposite topological charges, $pm1$, and are described by a two-dimensional $E^{prime}$ representation of the $D_{3h}$ point symmetry group. Due to the mode competition, this spaser exhibits a bistability: only one of these two modes generates, which is a spontaneous symmetry breaking. Such a spaser can be used for an ultrafast all-optical memory and information processing
Plasmons, quantized collective oscillations of electrons, have been observed in metals and semiconductors. Such massive electrons have been the basic ingredients of research in plasmonics and optical metamaterials.1 Also, Dirac plasmons have been obs erved in graphene, two-dimensional electron systems and topological insulators (TIs). A nontrivial Z2 topology of the bulk valence band leads to the emergence of massless Dirac fermions on the surface in TIs.2,3 Although Dirac plasmons can be formed through additional grating or patterning, their characteristics promise novel plasmonic metamaterials that are tunable in the terahertz and mid-infrared frequency ranges.4 Recently, the Majorana fermions have been verified through various kinds of topological superconductors(TSCs). In particular, the quantized and paired spin waves have been discovered in polyaromatic hydrocarbons(PAHs)5 and Majorana hinge and corner modes have been identified in the organic crystal of PAHs. Interestingly, regularity and periodicity can serve in the xy-plane of the crystal as the patterning of TSC resonators. Here, first we report experimental evidence of Majorana plasmonic excitations in a molecular topological superconductor (MTSC). It was prepared from MTSC resonators with different stacked numbers of HYLION-12. Distributing carriers into multiple MTSC resonators enhance the plasmonic resonance frequency and magnitude, which is different from the effects in a conventional semiconductor superlattice.6,7 The direct results of the unique carrier density scaling law of the resonance of massless Majorana fermions is demonstrated. Moreover, topological surface plasmon amplification by stimulated emission of radiation (SPASER) is also firstly created from the MTSC resonator. It has two mutually time-reversed chiral surface plasmon modes carrying the opposite topological charges.
We study the topological edge plasmon modes between two diatomic chains of identical plasmonic nanoparticles. Zak phase for longitudinal plasmon modes in each chain is calculated analytically by solutions of macroscopic Maxwells equations for particl es in quasi-static dipole approximation. This approximation provides a direct analogy with the Su-Schrieffer-Heeger model such that the eigenvalue is mapped to the frequency dependent inverse-polarizability of the nanoparticles. The edge state frequency is found to be the same as the single-particle resonance frequency, which is insensitive to the separation distances within a unit cell. Finally, full electrodynamic simulations with realistic parameters suggest that the edge plasmon mode can be realized through near-field optical spectroscopy.
It is widely recognized that a physical system can only respond to a periodic driving significantly when the driving frequency matches the normal mode frequency of the system, which leads to resonance. Off-resonant phenomena are rarely considered bec ause of the difficulty to realize strong coupling between physical systems and off-resonant waves. Here we examine the response of a magnetic system to squeezed light and surprisingly find that the magnons are maximally excited when the effective driving frequency is several orders of magnitude larger than the resonant frequency. The generated magnons are squeezed which brings the advantage of tunable squeezing through an external magnetic field. Furthermore, we demonstrate that such off-resonant quasi-particle excitation is universal in all the hybrid systems in which the coherent and parametric interaction of bosons exists and that it is purely a quantum effect, which is rooted in the quantum fluctuations of particles in the squeezed vacuum. Our findings may provide an unconventional route to study off-resonant phenomena and may further benefit the use of hybrid matter-light systems in continuous variable quantum information.
In this paper a surface plasmon polariton laser (spaser), which generates surface plasmons in graphene nanoflake, is considered. The peculiarities of spaser, such as strong material dispersion, require revision of basic laser equations. We provide a full derivation of equations of the spaser dynamics starting from the Maxwell-Bloch equations. Optical Bloch equations and rate equations are obtained and the relation of the equation parameters through the physical ones is given. In the case of graphene realization, the numerical parameter values are estimated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا