ترغب بنشر مسار تعليمي؟ اضغط هنا

GRB 161219B-SN 2016jca: a powerful stellar collapse

76   0   0.0 ( 0 )
 نشر من قبل Chris Ashall
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report observations and analysis of the nearby gamma-ray burst GRB,161219B (redshift $z=0.1475$) and the associated Type Ic supernova (SN) 2016jca. GRB,161219B had an isotropic gamma-ray energy of $sim 1.6 times 10^{50}$,erg. Its afterglow is likely refreshed at an epoch preceding the first photometric points (0.6,d), which slows down the decay rates. Combined analysis of the SN light curve and multiwavelength observations of the afterglow suggest that the GRB jet was broad during the afterglow phase (full opening angle $sim 42^circ pm 3^circ$). Our spectral series shows broad absorption lines typical of GRB supernovae (SNe), which testify to the presence of material with velocities up to $sim 0.25$c. The spectrum at 3.73,d allows for the very early identification of a SN associated with a GRB. Reproducing it requires a large photospheric velocity ($35,000 pm 7000$,kms). The kinetic energy of the SN is estimated through models to be KE $approx 4 times 10^{52}$,erg in spherical symmetry. The ejected mass in the explosion was Mej $approx 6.5 pm 1.5$,Msun, much less than that of other GRB-SNe, demonstrating diversity among these events. The total amount of Nifs in the explosion was $0.27 pm 0.05$,Msun. The observed spectra require the presence of freshly synthesised Nifs at the highest velocities, at least 3 times more than a standard GRB-SN. We also find evidence for a decreasing Nifs abundance as a function of decreasing velocity. This suggests that SN,2016jca was a highly aspherical explosion viewed close to on-axis, powered by a compact remnant. Applying a typical correction for asymmetry, the energy of SN,2016jca was $sim$ (1--3) $times 10^{52}$,erg, confirming that most of the energy produced by GRB-SNe goes into the kinetic energy of the SN ejecta.



قيم البحث

اقرأ أيضاً

Since the first discovery of a broad-lined type Ic supernova (SN) with a long-duration gamma-ray burst (GRB) in 1998, fewer than fifty gamma-ray burst supernovae (GRB-SNe) have been discovered. The intermediate-luminosity Swift GRB 161219B and its as sociated supernova SN 2016jca, which occurred at a redshift of z=0.1475, represents only the seventh GRB-SN to have been discovered within 1 Gpc, and hence provides an excellent opportunity to investigate the observational and physical properties of these very elusive and rare type of SN. As such, we present optical to near-infrared photometry and optical spectroscopy of GRB 161219B and SN 2016jca, spanning the first three months since its discovery. GRB 161219B exploded in the disk of an edge-on spiral galaxy at a projected distance of 3.4 kpc from the galactic centre. GRB 161219B itself is an outlier of the Amati relation, while SN 2016jca had a rest-frame, peak absolute V-band magnitude of M_V = -19.0, which it reached after 12.5 rest-frame days. We find that the bolometric properties of SN 2016jca are inconsistent with being powered solely by a magnetar central engine, as proposed by other authors, and demonstrate that it was likely powered exclusively by energy deposited by the radioactive decay of nickel and cobalt into their daughter products, which were nucleosynthesized when its progenitor underwent core collapse. We find that 0.22 solar masses of nickel is required to reproduce the peak luminosity of SN 2016jca, and we constrain an ejecta mass of 5.8 solar masses and a kinetic energy of ~5 x 10^52 erg. Finally, we report on a chromatic, pre-maximum bump in the g-band light curve, and discuss its possible origin. [Abridged]
We present optical and near-infrared (NIR) photometry for three gamma-ray burst supernovae (GRB-SNe): GRB 120729A, GRB 130215A / SN 2013ez and GRB 130831A / SN 2013fu. In the case of GRB 130215A / SN 2013ez, we also present optical spectroscopy at t- t0=16.1 d, which covers rest-frame 3000-6250 Angstroms. Based on Fe II (5169) and Si (II) (6355), our spectrum indicates an unusually low expansion velocity of 4000-6350 km/s, the lowest ever measured for a GRB-SN. Additionally, we determined the brightness and shape of each accompanying SN relative to a template supernova (SN 1998bw), which were used to estimate the amount of nickel produced via nucleosynthesis during each explosion. We find that our derived nickel masses are typical of other GRB-SNe, and greater than those of SNe Ibc that are not associated with GRBs. For GRB 130831A / SN 2013fu, we use our well-sampled R-band light curve (LC) to estimate the amount of ejecta mass and the kinetic energy of the SN, finding that these too are similar to other GRB-SNe. For GRB 130215A, we take advantage of contemporaneous optical/NIR observations to construct an optical/NIR bolometric LC of the afterglow. We fit the bolometric LC with the millisecond magnetar model of Zhang & Meszaros (2001), which considers dipole radiation as a source of energy injection to the forward shock powering the optical/NIR afterglow. Using this model we derive an initial spin period of P=12 ms and a magnetic field of B=1.1 x 10^15 G, which are commensurate with those found for proposed magnetar central engines of other long-duration GRBs.
On 2018 July 28, GRB 180728A triggered textit{Swift} satellites and, soon after the determination of the redshift, we identified this source as a type II binary-driven hypernova (BdHN II) in our model. Consequently, we predicted the appearance time o f its associated supernova (SN), which was later confirmed as SN 2018fip. A BdHN II originates in a binary composed of a carbon-oxygen core (CO$_{rm core}$) undergoing SN, and the SN ejecta hypercritically accrete onto a companion neutron star (NS). From the time of the SN shock breakout to the time when the hypercritical accretion starts, we infer the binary separation $simeq 3 times 10^{10}$ cm. The accretion explains the prompt emission of isotropic energy $simeq 3 times 10^{51}$ erg, lasting $sim 10$ s, and the accompanying observed blackbody emission from a thermal convective instability bubble. The new neutron star ($ u$NS) originating from the SN powers the late afterglow from which a $ u$NS initial spin of $2.5$ ms is inferred. We compare GRB 180728A with GRB 130427A, a type I binary-driven hypernova (BdHN I) with isotropic energy $> 10^{54}$ erg. For GRB 130427A we have inferred an initially closer binary separation of $simeq 10^{10}$ cm, implying a higher accretion rate leading to the collapse of the NS companion with consequent black hole formation, and a faster, $1$ ms spinning $ u$NS. In both cases, the optical spectra of the SNe are similar, and not correlated to the energy of the gamma-ray burst. We present three-dimensional smoothed-particle-hydrodynamic simulations and visualisations of the BdHNe I and II.
We present detailed multi-wavelength observations of GRB 161219B at $z=0.1475$, spanning the radio to X-ray regimes, and the first ALMA light curve of a GRB afterglow. The cm- and mm-band observations before $8.5$ d require emission in excess of that produced by the afterglow forward shock (FS). These data are consistent with radiation from a refreshed reverse shock (RS) produced by the injection of energy into the FS, signatures of which are also present in the X-ray and optical light curves. We infer a constant-density circumburst environment with an extremely low density, $n_0approx 3times10^{-4}$ cm$^{-3}$ and show that this is a characteristic of all strong RS detections to date. The VLA observations exhibit unexpected rapid variability on $sim$ minute timescales, indicative of strong interstellar scintillation. The X-ray, ALMA, and VLA observations together constrain the jet break time, $t_{rm jet}approx32$ day, yielding a wide jet opening angle of $theta_{rm jet}approx13^{circ}$, implying beaming corrected $gamma$-ray and kinetic energies of $E_{gamma}approx4.9times10^{48}$ erg and $E_{rm K}approx1.3times10^{50}$ erg, respectively. Comparing the RS and FS emission, we show that the ejecta are only weakly magnetized, with relative magnetization, $R_{rm B}approx1$, compared to the FS. These direct, multi-frequency measurements of a refreshed RS spanning the optical to radio bands highlight the impact of radio and millimeter data in probing the production and nature of GRB jets.
The number of supernovae known to be connected with long-duration gamma-ray bursts is increasing and the link between these events is no longer exclusively found at low redshift ($z lesssim 0.3$) but is well established also at larger distances. We p resent a new case of such a liaison at $z = 0.33$ between GRB,171010A and SN,2017htp. It is the second closest GRB with an associated supernova of only three events detected by Fermi-LAT. The supernova is one of the few higher redshift cases where spectroscopic observations were possible and shows spectral similarities with the well-studied SN,1998bw, having produced a similar Ni mass ($M_{rm Ni}=0.33pm0.02 ~rm{M_{odot}}$) with slightly lower ejected mass ($M_{rm ej}=4.1pm0.7~rm{M_{odot}}$) and kinetic energy ($E_{rm K} = 8.1pm2.5 times 10^{51} ~rm{erg}$). The host-galaxy is bigger in size than typical GRB host galaxies, but the analysis of the region hosting the GRB revealed spectral properties typically observed in GRB hosts and showed that the progenitor of this event was located in a very bright HII region of its face-on host galaxy, at a projected distance of $sim$ 10 kpc from its galactic centre. The star-formation rate (SFR$_{GRB} sim$ 0.2 M$_{odot}$~yr$^{-1}$) and metallicity (12 + log(O/H) $sim 8.15 pm 0.10$) of the GRB star-forming region are consistent with those of the host galaxies of previously studied GRB-SN systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا