ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron-nuclear coherent spin oscillations probed by spin dependent recombination

140   0   0.0 ( 0 )
 نشر من قبل Andrea Balocchi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate the detection of coherent electron-nuclear spin oscillations related to the hyperfine interaction and revealed by the band-to-band photoluminescence (PL) in zero external magnetic field. On the base of a pump-probe PL experiment we measure, directly in the temporal domain, the hyperfine constant of an electron coupled to a gallium defect in GaAsN by tracing the dynamical behavior of the conduction electron spin-dependent recombination to the defect site. The hyperfine constants and the relative abundance of the nuclei isotopes involved can be determined without the need of electron spin resonance technique and in the absence of any magnetic field. Information on the nuclear and electron spin relaxation damping parameters can also be estimated from the oscillations damping and the long delay behavior.



قيم البحث

اقرأ أيضاً

Similar to nitrogen-vacancy centers in diamond and impurity atoms in silicon, interstitial gallium deep paramagnetic centers in GaAsN have been proven to have useful characteristics for the development of spintronic devices. Among other interesting p roperties, under circularly polarized light, gallium centers in GaAsN act as spin filters that dynamically polarize free and bound electrons reaching record spin polarizations (100%). Furthermore, the recent observation of the amplification of the spin filtering effect under a Faraday configuration magnetic field has suggested that the hyperfine interaction that couples bound electrons and nuclei permits the optical manipulation of its nuclear spin polarization. Even though the mechanisms behind the nuclear spin polarization in gallium centers are fairly well understood, the origin of nuclear spin relaxation and the formation of an Overhauser-like magnetic field remain elusive. In this work we develop a model based on the master equation approach to describe the evolution of electronic and nuclear spin polarizations of gallium centers interacting with free electrons and holes. Our results are in good agreement with existing experimental observations. In regard to the nuclear spin relaxation, the roles of nuclear dipolar and quadrupolar interactions are discussed. Our findings show that, besides the hyperfine interaction, the spin relaxation mechanisms are key to understand the amplification of the spin filtering effect and the appearance of the Overhauser-like magnetic field. Based on our models results we propose an experimental protocol based on time resolved spectroscopy. It consists of a pump-probe photoluminescence scheme that would allow the detection and the tracing of the electron-nucleus flip-flops through time resolved PL measurements.
When a local and attractive potential is quenched in a nanowire, the spectrum changes its topology from a purely continuum to a continuum and discrete portion. We show that, under appropriate conditions, this quench leads to stable coherent oscillati ons in the observables time evolution. In particular, we demonstrate that ballistic nanowires with spin-orbit coupling (SOC) exposed to a uniform magnetic field are especially suitable to observe this effect. Indeed, while in ordinary nanowires the effect occurs only if the strength $U_0$ of the attractive potential is sufficiently strong, even a weak value of $U_0$ is sufficient in SOC nanowires. Furthermore, in these systems coherent oscillations in the spin sector can be generated and controlled electrically by quenching the gate voltage acting on the charge sector. We interpret the origin of this phenomenon, analyze the effect of variation of the chemical potential and the switching time of the quenched attractive potential, and address possible implementation schemes.
Spin dependent recombination in GaAsN offers many interesting possibilities in the design of spintronic devices mostly due to its astounding capability to reach conduction band electron spin polarizations close to 100% at room temperature. The mechan ism behind the spin selective capture of electrons in Ga$^{2+}$ paramagnetic centers is revisited in this paper to address inconsistencies common to most previously presented models. Primarily, these errors manifest themselves as major disagreements with the experimental observations of two key characteristics of this phenomenon: the effective Overhauser-like magnetic field and the width of the photoluminescence Lorentzian-like curves as a function of the illumination power. These features are not only essential to understand the spin dependent recombination in GaAsN, but are also key to the design of novel spintronic devices. Here we demonstrate that the particular structure of the electron capture expressions introduces spurious electron-nucleus correlations that artificially alter the balance between the hyperfine and the Zeeman contributions. This imbalance strongly distorts the effective magnetic field and width characteristics. In this work we propose an alternative recombination mechanism that preserves the electron-nucleus correlations and, at the same time, keeps the essential properties of the spin selective capture of electrons. This mechanism yields a significant improvement to the agreement between experimental and theoretical results. In particular, our model gives results in very good accord with the experimental effective Overhauser-like magnetic field and width data, and with the degree of circular polarization under oblique magnetic fields.
Spin-dependent photon echoes in combination with pump-probe Kerr rotation are used to study the microscopic electron spin transport in a CdTe/(Cd,Mg)Te quantum well in the hopping regime. We demonstrate that independent of the particular spin relaxat ion mechanism, hopping of resident electrons leads to a shortening of the photon echo decay time, while the transverse spin relaxation time evaluated from pump-probe transients increases due to motional narrowing of spin dynamics in the fluctuating effective magnetic field of the lattice nuclei.
Effects associated with the interference of electron waves around a magnetic point defect in two-dimensional electron gas with combined Rashba-Dresselhaus spin-orbit interaction in the presence of a parallel magnetic field are theoretically investiga ted. The effect of a magnetic field on the anisotropic spatial distribution of the local density of states and the local density of magnetization is analyzed. The existence of oscillations of the density of magnetization with scattering by a non-magnetic defect and the contribution of magnetic scattering (accompanied by spin-flip) in the local density of electron states are predicted.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا