ﻻ يوجد ملخص باللغة العربية
In this paper, we study the compressibility of random processes and fields, called generalized Levy processes, that are solutions of stochastic differential equations driven by $d$-dimensional periodic Levy white noises. Our results are based on the estimation of the Besov regularity of Levy white noises and generalized Levy processes. We show in particular that non-Gaussian generalized Levy processes are more compressible in a wavelet basis than the corresponding Gaussian processes, in the sense that their $n$-term approximation error decays faster. We quantify this compressibility in terms of the Blumenthal-Getoor index of the underlying Levy white noise.
In this paper, we study the Besov regularity of Levy white noises on the $d$-dimensional torus. Due to their rough sample paths, the white noises that we consider are defined as generalized stochastic fields. We, initially, obtain regularity results
We extend the concept of packing dimension profiles, due to Falconer and Howroyd (1997) and Howroyd (2001), and use our extension in order to determine the packing dimension of an arbitrary image of a general Levy process.
We investigate the algebra of repeated integrals of semimartingales. We prove that a minimal family of semimartingales generates a quasi-shuffle algebra. In essence, to fulfill the minimality criterion, first, the family must be a minimal generator o
We give equivalent conditions for the existence of generalized moments of a Levy process $(X_t)_{tgeq 0}$. We show, in particular, that the existence of a generalized $g$-moment is equivalent to uniform integrability of $(g(X_t))_{tin [0,1]}$. As an
We revisit the classical singular control problem of minimizing running and controlling costs. The problem arises in inventory control, as well as in healthcare management and mathematical finance. Existing studies have shown the optimality of a barr