ﻻ يوجد ملخص باللغة العربية
We report here on our search for excess power in photometry of Neptune collected by the K2 mission that may be due to intrinsic global oscillations of the planet Neptune. To conduct this search, we developed new methods to correct for instrumental effects such as intrapixel variability and gain variations. We then extracted and analyzed the time-series photometry of Neptune from 49 days of nearly continuous broadband photometry of the planet. We find no evidence of global oscillations and place an upper limit of $sim$5 ppm at 1000 uhz for the detection of a coherent signal. With an observed cadence of 1-minute and point-to-point scatter less than 0.01%, the photometric signal is dominated by reflected light from the Sun, which is in turn modulated by atmospheric variability of Neptune at the 2% level. A change in flux is also observed due to the increasing distance between Neptune and the K2 spacecraft, and solar variability with convection-driven solar p modes present.
We present precision transit observations of the Neptune-sized planets K2-28b and K2-100b, using the Engineered Diffuser on the ARCTIC imager on the ARC 3.5m Telescope at Apache Point Observatory. K2-28b is a $R_{p} = 2.56 R_oplus$ mini-Neptune trans
The Transiting Exoplanet Survey Satellite (TESS) is the first high-precision full-sky photometry survey in space. We present light curves from a magnitude limited set of stars and other stationary luminous objects from the TESS Full Frame Images, as
We present a new method to assess the properties of transiting planet candidates by multicolor photometry. By analyzing multicolor transit/eclipse light curves and apparent magnitudes of the target in parallel, this method attempts to identify the na
SPECULOOS-South, an observatory composed of four independent 1m robotic telescopes, located at ESO Paranal, Chile, started scientific operation in January 2019. This Southern Hemisphere facility operates as part of SPECULOOS, an international network
The Transiting Exoplanet Survey Satellite (TESS) is currently concluding its 2-year primary science mission searching 85% of the sky for transiting exoplanets. TESS has already discovered well over one thousand TESS objects of interest (TOIs), but th