ﻻ يوجد ملخص باللغة العربية
We perform a systematic analysis of the influence of phonon driving on the superconducting Holstein model coupled to heat baths by studying both the transient dynamics and the nonequilibrium steady state (NESS) in the weak and strong electron-phonon coupling regimes. Our study is based on the nonequilibrium dynamical mean-field theory, and for the NESS we present a Floquet formulation adapted to electron-phonon systems. The analysis of the phonon propagator suggests that the effective attractive interaction can be strongly enhanced in a parametric resonant regime because of the Floquet side bands of phonons. While this may be expected to enhance the superconductivity (SC), our fully self-consistent calculations, which include the effects of heating and nonthermal distributions, show that the parametric phonon driving generically results in a suppression or complete melting of the SC order. In the strong coupling regime, the NESS always shows a suppression of the SC gap, the SC order parameter and the superfluid density as a result of the driving, and this tendency is most prominent at the parametric resonance. Using the real-time nonequilibrium DMFT formalism, we also study the dynamics towards the NESS, which shows that the heating effect dominates the transient dynamics, and SC is weakened by the external modulations, in particular at the parametric resonance. In the weak coupling regime, we find that the SC fluctuations above the transition temperature are generally weakened under the driving. The strongest suppression occurs again around the parametric resonances because of the efficient energy absorption.
Quasiparticle dynamics of FeSe single crystals revealed by dual-color transient reflectivity measurements ({Delta}R/R) provides unprecedented information on Fe-based superconductors. The amplitude of fast component in {Delta}R/R clearly tells a compe
In this paper we discuss the normal and superconducting state properties of two pnictide superconductors, LaOFeAs and LaONiAs, using Migdal-Eliashberg theory and density functional perturbation theory. For pure LaOFeAs, the calculated electron-phonon
We report on Raman scattering experiments of the undoped SrFe2As2 and superconducting Sr0.85K0.15Fe2As2 (Tc=28K) and Ba0.72K0.28Fe2As2 (Tc=32K) single crystals. The frequency and linewidth of the B1g mode at 210 cm-1 exhibits an appreciable temperatu
The theory of Andreev conductance is formulated for junctions involving normal metals (N) and multiband superconductors (S) and applied to the case of superconductors with nodeless extended $s_{pm}$-wave order parameter symmetry, as possibly realized
Cuprates exhibit exceptionally strong superconductivity. To understand why, it is essential to elucidate the nature of the electronic interactions that cause pairing. Superconductivity occurs on the backdrop of several underlying electronic phases, i