ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonequilibrium steady states and transient dynamics of conventional superconductors under phonon driving

121   0   0.0 ( 0 )
 نشر من قبل Yuta Murakami
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform a systematic analysis of the influence of phonon driving on the superconducting Holstein model coupled to heat baths by studying both the transient dynamics and the nonequilibrium steady state (NESS) in the weak and strong electron-phonon coupling regimes. Our study is based on the nonequilibrium dynamical mean-field theory, and for the NESS we present a Floquet formulation adapted to electron-phonon systems. The analysis of the phonon propagator suggests that the effective attractive interaction can be strongly enhanced in a parametric resonant regime because of the Floquet side bands of phonons. While this may be expected to enhance the superconductivity (SC), our fully self-consistent calculations, which include the effects of heating and nonthermal distributions, show that the parametric phonon driving generically results in a suppression or complete melting of the SC order. In the strong coupling regime, the NESS always shows a suppression of the SC gap, the SC order parameter and the superfluid density as a result of the driving, and this tendency is most prominent at the parametric resonance. Using the real-time nonequilibrium DMFT formalism, we also study the dynamics towards the NESS, which shows that the heating effect dominates the transient dynamics, and SC is weakened by the external modulations, in particular at the parametric resonance. In the weak coupling regime, we find that the SC fluctuations above the transition temperature are generally weakened under the driving. The strongest suppression occurs again around the parametric resonances because of the efficient energy absorption.



قيم البحث

اقرأ أيضاً

293 - C. W. Luo , I. H. Wu , P. C. Cheng 2012
Quasiparticle dynamics of FeSe single crystals revealed by dual-color transient reflectivity measurements ({Delta}R/R) provides unprecedented information on Fe-based superconductors. The amplitude of fast component in {Delta}R/R clearly tells a compe ting scenario between spin fluctuations and superconductivity. Together with the transport measurements, the relaxation time analysis further exhibits anomalous changes at 90 K and 230 K. The former manifests a structure phase transition as well as the associated phonon softening. The latter suggests a previously overlooked phase transition or crossover in FeSe. The electron-phonon coupling constant {lambda} is found to be 0.16, identical to the value of theoretical calculations. Such a small {lambda} demonstrates an unconventional origin of superconductivity in FeSe.
In this paper we discuss the normal and superconducting state properties of two pnictide superconductors, LaOFeAs and LaONiAs, using Migdal-Eliashberg theory and density functional perturbation theory. For pure LaOFeAs, the calculated electron-phonon coupling constant $lambda=0.21$ and logarithmic-averaged frequency $omega_{ln}=206 K$, give a maximum $T_c$ of 0.8 K, using the standard Migdal-Eliashberg theory. Inclusion of multiband effects increases the Tc only marginally. To reproduce the experimental $T_c$, a 5-6 times larger coupling constant would be needed. Our results indicate that standard electron-phonon coupling is not sufficient to explain superconductivity in the whole family of Fe-As based superconductors. At the same time, the electron-phonon coupling in Ni-As based compounds is much stronger and its normal and superconducting state properties can be well described by standard Migdal-Eliashberg theory.
We report on Raman scattering experiments of the undoped SrFe2As2 and superconducting Sr0.85K0.15Fe2As2 (Tc=28K) and Ba0.72K0.28Fe2As2 (Tc=32K) single crystals. The frequency and linewidth of the B1g mode at 210 cm-1 exhibits an appreciable temperatu re dependence induced by the superconducting and spin density wave transitions. We give estimates of the electron-phonon coupling related to this renormalization. In addition, we observe a pronounced quasi-elastic Raman response for the undoped compound, suggesting persisting magnetic fluctuations to low temperatures. In the superconducting state the renormalization of an electronic continuum is observed with a threshold energy of 61cm-1.
The theory of Andreev conductance is formulated for junctions involving normal metals (N) and multiband superconductors (S) and applied to the case of superconductors with nodeless extended $s_{pm}$-wave order parameter symmetry, as possibly realized in the recently discovered ferro pnictides. We find qualitative differences from tunneling into s-wave or d-wave superconductors that may help to identify such a state. First, interband interference leads to a suppression of Andreev reflection in the case of a highly transparent N/S interface and to a current deficit in the tunneling regime. Second, surface bound states may appear, both at zero and at non-zero energies. These effects do not occur in multiband superconductors without interband sign reversal, though the interference can still strongly modify the conductance spectra.
Cuprates exhibit exceptionally strong superconductivity. To understand why, it is essential to elucidate the nature of the electronic interactions that cause pairing. Superconductivity occurs on the backdrop of several underlying electronic phases, i ncluding a doped Mott insulator at low doping, a strange metal at high doping, and an enigmatic pseudogap phase in between -- inside which a phase of charge-density-wave order appears. In this Article, we aim to shed light on the nature of these remarkable phases by focusing on the limit as $T to 0$, where experimental signatures and theoretical statements become sharper. We therefore survey the ground state properties of cuprates once superconductivity has been removed by the application of a magnetic field, and distill their key universal features.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا