ترغب بنشر مسار تعليمي؟ اضغط هنا

Neural Reconstruction Integrity: A metric for assessing the connectivity of reconstructed neural networks

88   0   0.0 ( 0 )
 نشر من قبل Elizabeth Reilly
 تاريخ النشر 2017
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Neuroscientists are actively pursuing high-precision maps, or graphs, consisting of networks of neurons and connecting synapses in mammalian and non-mammalian brains. Such graphs, when coupled with physiological and behavioral data, are likely to facilitate greater understanding of how circuits in these networks give rise to complex information processing capabilities. Given that the automated or semi-automated methods required to achieve the acquisition of these graphs are still evolving, we develop a metric for measuring the performance of such methods by comparing their output with those generated by human annotators (ground truth data). Whereas classic metrics for comparing annotated neural tissue reconstructions generally do so at the voxel level, the metric proposed here measures the integrity of neurons based on the degree to which a collection of synaptic terminals belonging to a single neuron of the reconstruction can be matched to those of a single neuron in the ground truth data. The metric is largely insensitive to small errors in segmentation and more directly measures accuracy of the generated brain graph. It is our hope that use of the metric will facilitate the broader communitys efforts to improve upon existing methods for acquiring brain graphs. Herein we describe the metric in detail, provide demonstrative examples of the intuitive scores it generates, and apply it to a synthesized neural network with simulated reconstruction errors.



قيم البحث

اقرأ أيضاً

The advent of comprehensive synaptic wiring diagrams of large neural circuits has created the field of connectomics and given rise to a number of open research questions. One such question is whether it is possible to reconstruct the information stor ed in a recurrent network of neurons, given its synaptic connectivity matrix. Here, we address this question by determining when solving such an inference problem is theoretically possible in specific attractor network models and by providing a practical algorithm to do so. The algorithm builds on ideas from statistical physics to perform approximate Bayesian inference and is amenable to exact analysis. We study its performance on three different models and explore the limitations of reconstructing stored patterns from synaptic connectivity.
A developmental disorder that severely damages communicative and social functions, the Autism Spectrum Disorder (ASD) also presents aspects related to mental rigidity, repetitive behavior, and difficulty in abstract reasoning. More, imbalances betwee n excitatory and inhibitory brain states, in addition to cortical connectivity disruptions, are at the source of the autistic behavior. Our main goal consists in unveiling the way by which these local excitatory imbalances and/or long brain connections disruptions are linked to the above mentioned cognitive features. We developed a theoretical model based on Self-Organizing Maps (SOM), where a three-level artificial neural network qualitatively incorporates these kinds of alterations observed in brains of patients with ASD. Computational simulations of our model indicate that high excitatory states or long distance under-connectivity are at the origins of cognitive alterations, as difficulty in categorization and mental rigidity. More specifically, the enlargement of excitatory synaptic reach areas in a cortical map development conducts to low categorization (over-selectivity) and poor concepts formation. And, both the over-strengthening of local excitatory synapses and the long distance under-connectivity, although through distinct mechanisms, contribute to impaired categorization (under-selectivity) and mental rigidity. Our results indicate how, together, both local and global brain connectivity alterations give rise to spoiled cortical structures in distinct ways and in distinct cortical areas. These alterations would disrupt the codification of sensory stimuli, the representation of concepts and, thus, the process of categorization - by this way imposing serious limits to the mental flexibility and to the capacity of generalization in the autistic reasoning.
One of the primary goals of systems neuroscience is to relate the structure of neural circuits to their function, yet patterns of connectivity are difficult to establish when recording from large populations in behaving organisms. Many previous appro aches have attempted to estimate functional connectivity between neurons using statistical modeling of observational data, but these approaches rely heavily on parametric assumptions and are purely correlational. Recently, however, holographic photostimulation techniques have made it possible to precisely target selected ensembles of neurons, offering the possibility of establishing direct causal links. Here, we propose a method based on noisy group testing that drastically increases the efficiency of this process in sparse networks. By stimulating small ensembles of neurons, we show that it is possible to recover binarized network connectivity with a number of tests that grows only logarithmically with population size under minimal statistical assumptions. Moreover, we prove that our approach, which reduces to an efficiently solvable convex optimization problem, can be related to Variational Bayesian inference on the binary connection weights, and we derive rigorous bounds on the posterior marginals. This allows us to extend our method to the streaming setting, where continuously updated posteriors allow for optional stopping, and we demonstrate the feasibility of inferring connectivity for networks of up to tens of thousands of neurons online. Finally, we show how our work can be theoretically linked to compressed sensing approaches, and compare results for connectivity inference in different settings.
The noninvasive procedures for neural connectivity are under questioning. Theoretical models sustain that the electromagnetic field registered at external sensors is elicited by currents at neural space. Nevertheless, what we observe at the sensor sp ace is a superposition of projected fields, from the whole gray-matter. This is the reason for a major pitfall of noninvasive Electrophysiology methods: distorted reconstruction of neural activity and its connectivity or leakage. It has been proven that current methods produce incorrect connectomes. Somewhat related to the incorrect connectivity modelling, they disregard either Systems Theory and Bayesian Information Theory. We introduce a new formalism that attains for it, Hidden Gaussian Graphical State-Model (HIGGS). A neural Gaussian Graphical Model (GGM) hidden by the observation equation of Magneto-encephalographic (MEEG) signals. HIGGS is equivalent to a frequency domain Linear State Space Model (LSSM) but with sparse connectivity prior. The mathematical contribution here is the theory for high-dimensional and frequency-domain HIGGS solvers. We demonstrate that HIGGS can attenuate the leakage effect in the most critical case: the distortion EEG signal due to head volume conduction heterogeneities. Its application in EEG is illustrated with retrieved connectivity patterns from human Steady State Visual Evoked Potentials (SSVEP). We provide for the first time confirmatory evidence for noninvasive procedures of neural connectivity: concurrent EEG and Electrocorticography (ECoG) recordings on monkey. Open source packages are freely available online, to reproduce the results presented in this paper and to analyze external MEEG databases.
415 - Qi She , Anqi Wu 2019
Latent dynamics discovery is challenging in extracting complex dynamics from high-dimensional noisy neural data. Many dimensionality reduction methods have been widely adopted to extract low-dimensional, smooth and time-evolving latent trajectories. However, simple state transition structures, linear embedding assumptions, or inflexible inference networks impede the accurate recovery of dynamic portraits. In this paper, we propose a novel latent dynamic model that is capable of capturing nonlinear, non-Markovian, long short-term time-dependent dynamics via recurrent neural networks and tackling complex nonlinear embedding via non-parametric Gaussian process. Due to the complexity and intractability of the model and its inference, we also provide a powerful inference network with bi-directional long short-term memory networks that encode both past and future information into posterior distributions. In the experiment, we show that our model outperforms other state-of-the-art methods in reconstructing insightful latent dynamics from both simulated and experimental neural datasets with either Gaussian or Poisson observations, especially in the low-sample scenario. Our codes and additional materials are available at https://github.com/sheqi/GP-RNN_UAI2019.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا