ترغب بنشر مسار تعليمي؟ اضغط هنا

A tidal disruption event in the nearby ultra-luminous infrared galaxy F01004-2237

263   0   0.0 ( 0 )
 نشر من قبل Clive Tadhunter
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Tidal disruption events (TDEs), in which stars are gravitationally disrupted as they pass close to the supermassive black holes in the centres of galaxies, are potentially important probes of strong gravity and accretion physics. Most TDEs have been discovered in large-area monitoring surveys of many 1000s of galaxies, and the rate deduced for such events is relatively low: one event every 10$^4$ - 10$^5$ years per galaxy. However, given the selection effects inherent in such surveys, considerable uncertainties remain about the conditions that favour TDEs. Here we report the detection of unusually strong and broad helium emission lines following a luminous optical flare (Mv < -20.1 mag) in the nucleus of the nearby ultra-luminous infrared galaxy F01004-2237. The particular combination of variability and post-flare emission line spectrum observed in F01004-2237 is unlike any known supernova or active galactic nucleus. Therefore, the most plausible explanation for this phenomenon is a TDE -- the first detected in a galaxy with an ongoing massive starburst. The fact that this event has been detected in repeat spectroscopic observations of a sample of 15 ultra-luminous infrared galaxies over a period of just 10 years suggests that the rate of TDEs is much higher in such objects than in the general galaxy population.



قيم البحث

اقرأ أيضاً

We report the serendipitous discovery of a bright point source flare in the Abell cluster 1795 with archival EUVE and Chandra observations. Assuming the EUVE emission is associated with the Chandra source, the X-ray 0.5-7 keV flux declined by a facto r of ~2300 over a time span of 6 years, following a power-law decay with index ~2.44+-0.40. The Chandra data alone vary by a factor of ~20. The spectrum is well fit by a blackbody with a constant temperature of kT~0.09 keV (~10^6 K). The flare is spatially coincident with the nuclear region of a faint, inactive galaxy with a photometric redshift consistent at the one sigma level with the cluster (z=0.062476). We argue that these properties are indicative of a tidal disruption of a star by a black hole with log(M_BH/M_sun)~5.5+-0.5. If so, such a discovery indicates that tidal disruption flares may be used to probe black holes in the intermediate mass range, which are very difficult to study by other means.
Tidal disruption events (TDEs) are transient flares produced when a star is ripped apart by the gravitational field of a supermassive black hole (SMBH). We have observed a transient source in the western nucleus of the merging galaxy pair Arp 299 tha t radiated >1.5x10^52 erg in the infrared and radio, but was not luminous at optical or X-ray wavelengths. We interpret this as a TDE with much of its emission re-radiated at infrared wavelengths by dust. Efficient reprocessing by dense gas and dust may explain the difference between theoretical predictions and observed luminosities of TDEs. The radio observations resolve an expanding and decelerating jet, probing the jet formation and evolution around a SMBH.
We constrain the recent star formation histories of the host galaxies of eight optical/UV-detected tidal disruption events (TDEs). Six hosts had quick starbursts of <200 Myr duration that ended 10 to 1000 Myr ago, indicating that TDEs arise at differ ent times in their hosts post-starburst evolution. If the disrupted star formed in the burst or before, the post-burst age constrains its mass, generally excluding O, most B, and highly massive A stars. If the starburst arose from a galaxy merger, the time since the starburst began limits the coalescence timescale and thus the merger mass ratio to more equal than 12:1 in most hosts. This uncommon ratio, if also that of the central supermassive black hole (SMBH) binary, disfavors the scenario in which the TDE rate is boosted by the binary but is insensitive to its mass ratio. The stellar mass fraction created in the burst is 0.5-10% for most hosts, not enough to explain the observed 30-200x boost in TDE rates, suggesting that the hosts core stellar concentration is more important. TDE hosts have stellar masses 10^9.4 - 10^10.3 Msun, consistent with the SDSS volume-corrected, quiescent Balmer-strong comparison sample and implying SMBH masses of 10^5.5 - 10^7.5 Msun. Subtracting the host absorption line spectrum, we uncover emission lines; at least five hosts have ionization sources inconsistent with star formation that instead may be related to circumnuclear gas, merger shocks, or post-AGB stars.
We investigate misaligned accretion discs formed after tidal disruption events that occur when a star encounters a supermassive black hole. We employ the linear theory of warped accretion discs to find the shape of a disc for which the stream arising from the disrupted star provides a source of angular momentum that is misaligned with that of the black hole. For quasi-steady configurations we find that when the warp diffusion or propagation time is large compared to the local mass accretion time and/or the natural disc alignment radius is small, misalignment is favoured. These results have been verified using SPH simulations. We also simulated 1D model discs including gas and radiation pressure. As accretion rates initially exceed the Eddington limit the disc is initially advection dominated. Assuming the $alpha$ model for the disc, where it can be thermally unstable it subsequently undergoes cyclic transitions between high and low states. During these transitions the aspect ratio varies from $sim 1$ to $sim 10^{-3}$ which is reflected in changes in the degree of disc misalignment at the stream impact location. For maximal black hole rotation and sufficiently large values of viscosity parameter $alpha > sim 0.01-0.1$ the ratio of the disc inclination to that of the initial stellar orbit is estimated to be $0.1-0.2$ in the advection dominated state, while reaching of order unity in the low state. Misalignment descreases with decrease of $alpha$, but increases as the black hole rotation parameter decreases. Thus, it is always significant when the latter is small.
105 - S. Komossa , H. Zhou , A. Rau 2009
The galaxy SDSSJ0952+2143 showed remarkable emission-line properties first reported in 2008 (paper I), which are the consequence of a powerful high-energy flare. Here we report follow-up observations of SDSSJ0952+2143, and discuss outburst scenarios in terms of stellar tidal disruption by a SMBH, peculiar variability of an AGN, and a supernova explosion. The optical spectrum of SDSSJ0952+2143 exhibits several peculiarities: an exceptional ratio of [FeVII] transitions over [OIII], a dramatic decrease by a factor of 10 of the highest-ionization lines, a very unusual and variable Balmer line profile including a triple-peaked narrow component with two unresolved horns, and a large Balmer decrement. The MIR emission measured with the Spitzer IRS in the narrow 10-20mu band is extraordinarily luminous (3.5 x 10^{43} ergs). The IRS spectrum shows a bump around ~11mu and an increase towards longer wavelengths, reminiscent of silicate emission. The strong MIR excess over the NIR implies the dominance of relatively cold dust. The X-ray luminosity of 10^{41} ergs measured with Chandra is below that typically observed in AGN. Similarities of SDSSJ0952+2143 with some extreme supernovae suggest the explosion of a supernova of Type IIn. However, an extreme accretion event in a low-luminosity AGN or inactive galaxy, especially stellar tidal disruption, remain possibilities, which could potentially produce a very similar emission-line response. If indeed a supernova, SDSSJ0952+2143 is one of the most distant X-ray and MIR detected SNe known so far, the most MIR luminous, and one of the most X-ray luminous. It is also by far the most luminous (>10^{40} ergs) in high-ionization coronal lines, exceeding previous SNe by at least a factor of 100 [abridged].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا