ﻻ يوجد ملخص باللغة العربية
The combination of the surface science techniques (STM, XPS, ARPES) and density-functional theory calculations was used to study the decoupling of graphene from Ni(111) by oxygen intercalation. The formation of the antiferromagnetic (AFM) NiO layer at the interface between graphene and ferromagnetic (FM) Ni is found, where graphene protects the underlying AFM/FM sandwich system. It is found that graphene is fully decoupled in this system and strongly $p$-doped via charge transfer with a position of the Dirac point of $(0.69pm0.02)$ eV above the Fermi level. Our theoretical analysis confirms all experimental findings, addressing also the interface properties between graphene and AFM NiO.
We have performed electron energy-loss spectroscopy (EELS) studies of Ni(111), graphene/Ni(111), and the graphene/Au/Ni(111) intercalation-like system at different primary electron energies. A reduced parabolic dispersion of the pi plasmon excitation
Intercalation of alkali atoms within the lamellar transition metal dichalcogenides is a possible route toward a new generation of batteries. It is also a way to induce structural phase transitions authorizing the realization of optical and electrical
We report the structural and electronic properties of an artificial graphene/Ni(111) system obtained by the intercalation of a monoatomic layer of Ni in graphene/Ir(111). Upon intercalation, Ni grows epitaxially on Ir(111), resulting in a lattice mis
Angle-resolved photoemission spectroscopy and Auger electron spectroscopy have been applied to study the intercalation process of silver underneath a monolayer of graphite (MG) on Ni(111). The room-temperature deposition of silver on top of MG/Ni(111
Experimental and theoretical studies of manganese deposition on graphene/Ni(111) shows that a thin ferromagnetic Ni3Mn layer, which is protected by the graphene overlayer, is formed upon Mn intercalation. The electronic bands of graphene are affected