ﻻ يوجد ملخص باللغة العربية
Due to the exponential growth of the state space of coupled quantum systems it is not possible, in general, to numerically store the state of a very large number of quantum systems within a classical computer. We demonstrate a method for modelling the dynamical behaviour of measurable quantities for very large numbers of interacting quantum systems. Our approach makes use of a symbolic non-commutative algebra engine that we have recently developed in conjunction with the well-known Ehrenfest theorem. Here we show the possibility of determining the dynamics of experimentally observable quantities, without approximation, for very large numbers of interacting harmonic oscillators. Our analysis removes a large number of significant constraints present in previous analysis of this example system (such as having no entanglement in the initial state). This method will be of value in simulating the operation of large quantum machines, emergent behaviour in quantum systems, open quantum systems and quantum chemistry to name but a few.
It is shown how to formulate the ubiquitous quantum chemistry problem of calculating the thermal rate constant on a quantum computer. The resulting exact algorithm scales exponentially faster with the dimensionality of the system than all known ``classical algorithms for this problem.
We present a quantum algorithm for calculating the vibronic spectrum of a molecule, a useful but classically hard problem in chemistry. We show several advantages over previous quantum approaches: vibrational anharmonicity is naturally included; afte
Modeling many-body quantum systems with strong interactions is one of the core challenges of modern physics. A range of methods has been developed to approach this task, each with its own idiosyncrasies, approximations, and realm of applicability. Pe
Predicting features of complex, large-scale quantum systems is essential to the characterization and engineering of quantum architectures. We present an efficient approach for constructing an approximate classical description, called the classical sh
We study the short-time evolution of the bipartite entanglement in quantum lattice systems with local interactions in terms of the purity of the reduced density matrix. A lower bound for the purity is derived in terms of the eigenvalue spread of the