ﻻ يوجد ملخص باللغة العربية
We analyse the dynamics leading to radiative cooling of an atomic ensemble confined inside an optical cavity when the atomic dipolar transitions are incoherently pumped and can synchronize. Our study is performed in the semiclassical regime and assumes that cavity decay is the largest rate in the system dynamics. We identify three regimes characterising the cooling. At first hot atoms are individually cooled by the cavity friction forces. After this stage, the atoms center-of-mass motion is further cooled by the coupling to the internal degrees of freedom while the dipoles synchronize. In the latest stage dipole-dipole correlations are stationary and the center-of-mass motion is determined by the interplay between friction and dispersive forces due to the coupling with the collective dipole. We analyse this asymptotic regime by means of a mean-field model and show that the width of the momentum distribution can be of the order of the photon recoil. Furthermore, the internal excitations oscillate spatially with the cavity standing wave forming an antiferromagnetic-like order.
In this article we present a systematic derivation of the Maxwell-Bloch equations describing amplification and laser action in a ring cavity. We derive the Maxwell-Bloch equations for a two-level medium and discuss their applicability to standard thr
The explicit semiclassical treatment of logarithmic perturbation theory for the nonrelativistic bound states problem is developed. Based upon $hbar$-expansions and suitable quantization conditions a new procedure for deriving perturbation expansions
Resonance-assisted tunneling is investigated within the framework of one-dimensional integrable systems. We present a systematic recipe, based on Hamiltonian normal forms, to construct one-dimensional integrable models that exhibit resonance island c
We review the quantum theory of cooling of a mechanical oscillator subject to the radiation pressure force due to light circulating inside a driven optical cavity. Such optomechanical setups have been used recently in a series of experiments by vario
In this dissertation, I present a general method for studying quantum error correction codes (QECCs). This method not only provides us an intuitive way of understanding QECCs, but also leads to several extensions of standard QECCs, including the oper