ﻻ يوجد ملخص باللغة العربية
Random network models play a prominent role in modeling, analyzing and understanding complex phenomena on real-life networks. However, a key property of networks is often neglected: many real-world networks exhibit spatial structure, the tendency of a node to select neighbors with a probability depending on physical distance. Here, we introduce a class of random spatial networks (RSNs) which generalizes many existing random network models but adds spatial structure. In these networks, nodes are placed randomly in space and joined in edges with a probability depending on their distance and their individual expected degrees, in a manner that crucially remains analytically tractable. We use this network class to propose a new generalization of small-world networks, where the average shortest path lengths in the graph are small, as in classical Watts-Strogatz small-world networks, but with close spatial proximity of nodes that are neighbors in the network playing the role of large clustering. Small-world effects are demonstrated on these spatial small-world networks without clustering. We are able to derive partial integro-differential equations governing susceptible-infectious-recovered disease spreading through an RSN, and we demonstrate the existence of traveling wave solutions. If the distance kernel governing edge placement decays slower than exponential, the population-scale dynamics are dominated by long-range hops followed by local spread of traveling waves. This provides a theoretical modeling framework for recent observations of how epidemics like Ebola evolve in modern connected societies, with long-range connections seeding new focal points from which the epidemic locally spreads in a wavelike manner.
Networks with underlying metric spaces attract increasing research attention in network science, statistical physics, applied mathematics, computer science, sociology, and other fields. This attention is further amplified by the current surge of acti
Small-worlds represent efficient communication networks that obey two distinguishing characteristics: a high clustering coefficient together with a small characteristic path length. This paper focuses on an interesting paradox, that removing links in
We establish a relationship between the Small-World behavior found in complex networks and a family of Random Walks trajectories using, as a linking bridge, a maze iconography. Simple methods to generate mazes using Random Walks are discussed along w
Many diseases display heterogeneity in clinical features and their progression, indicative of the existence of disease subtypes. Extracting patterns of disease variable progression for subtypes has tremendous application in medicine, for example, in
Parkinsons disease (PD) is a common neurodegenerative disease with a high degree of heterogeneity in its clinical features, rate of progression, and change of variables over time. In this work, we present a novel data-driven, network-based Trajectory