ترغب بنشر مسار تعليمي؟ اضغط هنا

Four-body calculation of ${}^2mathrm{H}(d,p){}^3mathrm{H}$ and ${}^2mathrm{H}(d,n){}^3mathrm{He}$ reactions above breakup threshold

53   0   0.0 ( 0 )
 نشر من قبل Arnoldas Deltuva
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Nucleon transfer reactions in deuteron-deuteron collisions at energies above the three- and four-body breakup threshold are described using exact four-body equations for transition operators that are solved in the momentum-space framework. Differential cross sections, analyzing powers, polarizations, and spin transfer coefficients are obtained using realistic two-nucleon potentials and including the Coulomb repulsion between protons. Overall good agreement between predictions and experimental data is found. Most remarkable discrepancies are seen around the minima of the differential cross section at higher energies and in the outgoing nucleon polarization at lower energies.



قيم البحث

اقرأ أيضاً

121 - A. Deltuva , A. C. Fonseca 2015
Deuteron-deuteron elastic scattering and transfer reactions in the energy regime above four-nucleon breakup threshold are described by solving exact four-particle equations for transition operators. Several realistic nuclear interaction models are us ed, including the one with effective many-nucleon forces generated by the explicit $Delta$-isobar excitation; the Coulomb force between protons is taken into account as well. Differential cross sections, deuteron analyzing powers, outgoing nucleon polarization, and deuteron-to-neutron polarization transfer coefficients are calculated at 10 MeV deuteron energy. Overall good agreement with the experimental data is found. The importance of breakup channels is demonstrated.
147 - F.M. Nunes , A. Deltuva 2011
The finite range adiabatic wave approximation provides a practical method to analyze (d,p) or (p,d) reactions, however until now the level of accuracy obtained in the description of the reaction dynamics has not been determined. In this work, we perf orm a systematic comparison between the finite range adiabatic wave approximation and the exact Faddeev method. We include studies of $^{11}$Be(p,d)$^{10}$Be(g.s.) at $E_p=$5, 10 and 35 MeV; $^{12}$C(d,p)$^{13}$C(g.s.) at $E_d=$7, 12 and 56 MeV and $^{48}$Ca(d,p)$^{49}$Ca(g.s.) at $E_d=$19, 56 and 100 MeV. Results show that the two methods agree within $approx 5%$ for a range of beam energies ($E_d approx 20-40$ MeV) but differences increase significantly for very low energies and for the highest energies. Our tests show that ADWA agrees best with Faddeev when the angular momentum transfer is small $Delta l=0$ and when the neutron-nucleus system is loosely bound.
{it Ab initio} calculation of the total cross section for the reactions $^{4}rm{He}(gamma,p)^3rm{H}$ and $^{4}rm{He}(gamma,n)^3rm{He}$ is presented, using state-of-the-art nuclear forces. The Lorentz integral transform (LIT) method is applied, which allows exact treatment of the final state interaction (FSI). The dynamic equations are solved using the effective interaction hyperspherical harmonics (EIHH) method. In this calculation of the cross sections the three-nucleon force is fully taken into account, except in the source term of the LIT equation for the FSI transition matrix element.
183 - A. Deltuva , A. C. Fonseca 2015
Proton-${}^3$H elastic scattering and charge-exchange reaction ${}^3$H$(p,n){}^3$He in the energy regime above four-nucleon breakup threshold are described in the momentum-space transition operator framework. Fully converged results are obtained usin g realistic two-nucleon potentials and two-proton Coulomb force as dynamic input. Differential cross section, proton analyzing power, outgoing neutron polarization, and proton-to-neutron polarization transfer coefficients are calculated between 6 and 30 MeV proton beam energy. Good agreement with the experimental data is found for the differential cross section both in elastic and charge-exchange reactions; the latter shows a complicated energy and angular dependence. The most sizable discrepancies between predictions and data are found for the proton analyzing power and outgoing neutron polarization in the charge-exchange reaction, while the respective proton-to-neutron polarization transfer coefficients are well described by the calculations.
Deuterated molecules are important chemical tracers of prestellar and protostellar cores. Up to now, the titular reaction has been assumed to contribute to the generation of these deuterated molecules. We have measured the merged-beams rate coefficie nt for this reaction as function of the relative collision energy in the range of about 10 meV to 10 eV. By varying the internal temperature of the reacting H$_3^+$ molecules, we found indications for the existence of a reaction barrier. We have performed detailed theoretical calculations for the zero-point-corrected energy profile of the reaction and determined a new value for the barrier height of $approx$ 68 meV. Furthermore, we have calculated the tunneling probability through the barrier. Our experimental and theoretical results show that the reaction is essentially closed at astrochemically relevant temperatures. We derive a thermal rate coefficient of $<1times 10^{-12}$ cm$^3$ s$^{-1}$ for temperatures below 75 K with tunneling effects included and below 155 K without tunneling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا