ﻻ يوجد ملخص باللغة العربية
Ancient Chinese texts present an area of enormous challenge and opportunity for humanities scholars interested in exploiting computational methods to assist in the development of new insights and interpretations of culturally significant materials. In this paper we describe a collaborative effort between Indiana University and Xian Jiaotong University to support exploration and interpretation of a digital corpus of over 18,000 ancient Chinese documents, which we refer to as the Handian ancient classics corpus (H`an diu{a}n gu{u} ji, i.e, the Han canon or Chinese classics). It contains classics of ancient Chinese philosophy, documents of historical and biographical significance, and literary works. We begin by describing the Digital Humanities context of this joint project, and the advances in humanities computing that made this project feasible. We describe the corpus and introduce our application of probabilistic topic modeling to this corpus, with attention to the particular challenges posed by modeling ancient Chinese documents. We give a specific example of how the software we have developed can be used to aid discovery and interpretation of themes in the corpus. We outline more advanced forms of computer-aided interpretation that are also made possible by the programming interface provided by our system, and the general implications of these methods for understanding the nature of meaning in these texts.
The general problem of information foraging in an environment about which agents have incomplete information has been explored in many fields, including cognitive psychology, neuroscience, economics, finance, ecology, and computer science. In all of
The abolitionist movement of the nineteenth-century United States remains among the most significant social and political movements in US history. Abolitionist newspapers played a crucial role in spreading information and shaping public opinion aroun
This work focuses on combining nonparametric topic models with Auto-Encoding Variational Bayes (AEVB). Specifically, we first propose iTM-VAE, where the topics are treated as trainable parameters and the document-specific topic proportions are obtain
Human conversations naturally evolve around different topics and fluently move between them. In research on dialog systems, the ability to actively and smoothly transition to new topics is often ignored. In this paper we introduce TIAGE, a new topic-
In the last decade, a variety of topic models have been proposed for text engineering. However, except Probabilistic Latent Semantic Analysis (PLSA) and Latent Dirichlet Allocation (LDA), most of existing topic models are seldom applied or considered