ﻻ يوجد ملخص باللغة العربية
Passive Kerr cavities driven by coherent laser fields display a rich landscape of nonlinear physics, including bistability, pattern formation, and localised dissipative structures (solitons). Their conceptual simplicity has for several decades offered an unprecedented window into nonlinear cavity dynamics, providing insights into numerous systems and applications ranging from all-optical memory devices to microresonator frequency combs. Yet despite the decades of study, a recent theoretical study has surprisingly alluded to an entirely new and unexplored paradigm in the regime where nonlinearly tilted cavity resonances overlap with one another [T. Hansson and S. Wabnitz, J. Opt. Soc. Am. B 32, 1259 (2015)]. We have used synchronously driven fiber ring resonators to experimentally access this regime, and observed the rise of new nonlinear dissipative states. Specifically, we have observed, for the first time to the best of our knowledge, the stable coexistence of dissipative (cavity) solitons and extended modulation instability (Turing) patterns, and performed real time measurements that unveil the dynamics of the ensuing nonlinear structures. When operating in the regime of continuous wave tristability, we have further observed the coexistence of two distinct cavity soliton states, one of which can be identified as a super cavity soliton as predicted by Hansson and Wabnitz. Our experimental findings are in excellent agreement with theoretical analyses and numerical simulations of the infinite-dimensional Ikeda map that governs the cavity dynamics. The results from our work reveal that experimental systems can support complex combinations of distinct nonlinear states, and they could have practical implications to future microresonator-based frequency comb sources.
We report on experimental observations of coexistence and interactions between nonlinear states with different polarizations in a passive Kerr resonator driven at a single carrier frequency. Using a fiber ring resonator with adjustable birefringence,
Using a passive driven nonlinear optical fiber ring resonator, we report the experimental realization of dissipative polarization domain walls. The domain walls arise through a symmetry breaking bifurcation and consist of temporally localized structu
We introduce a one-dimensional model of a cavity with the Kerr nonlinearity and saturated gain, designed so as to keep solitons in the state of shuttle motion. The solitons are always unstable in the cavity bounded by the usual potential barriers, du
We report on the experimental observation of spontaneous creation and annihilation of temporal cavity solitons (CSs) in a coherently-driven, macroscopic optical fiber resonator. Specifically, we show that CSs are spontaneously created when the freque
Dissipative Kerr cavity solitons (CSs) are persisting pulses of light that manifest themselves in driven optical resonators and that have attracted significant attention over the last decade. Whilst the vast majority of studies have revolved around c